Giả sử \({{z}_{1}},{{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực. Biết rằng \(\left| {{z}_{1}}-{{z}_{2}} \right|=4\), giá trị nhỏ nhất của \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử z=x+yi, \(x,y\in \mathbb{R}\).Gọi A,B lần lượt là điểm biểu diễn cho các số phức \({{z}_{1}},{{z}_{2}}\). Suy ra \(AB=\left| {{z}_{1}}-{{z}_{2}} \right|=4\).
* Ta có \(\left( z-6 \right)\left( 8+\overline{zi} \right) =\left[ \left( x-6 \right)+yi \right].\left[ \left( 8-y \right)-xi \right] =\left( 8x+6y-48 \right)-\left( {{x}^{2}}+{{y}^{2}}-6x-8y \right)i\). Theo giả thiết \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực nên ta suy ra \({{x}^{2}}+{{y}^{2}}-6x-8y=0\). Tức là các điểm A,B thuộc đường tròn \(\left( C \right)\) tâm \(I\left( 3;4 \right)\), bán kính R=5.
* Xét điểm M thuộc đoạn AB thỏa \(\overrightarrow{MA}+3\overrightarrow{MB}=\overrightarrow{0}\Leftrightarrow \overrightarrow{OA}+3\overrightarrow{OB}=4\overrightarrow{OM}\)
Gọi H là trung điểm AB.
Ta có \(HA=HB=\frac{AB}{2}=2\) và \(MA=\frac{3}{4}AB=3 \Rightarrow HM=MA-HA=1\).
Từ đó \(H{{I}^{2}}={{R}^{2}}-H{{B}^{2}}=21, IM=\sqrt{H{{I}^{2}}+H{{M}^{2}}}=\sqrt{22}\), suy ra điểm M thuộc đường tròn \(\left( {{C}'} \right)\) tâm \(I\left( 3;4 \right)\), bán kính \(r=\sqrt{22}\)
* Ta có \(\left| {{z}_{1}}+3{{z}_{2}} \right|=\left| \overrightarrow{OA}+3\overrightarrow{OB} \right|=\left| 4\overrightarrow{OM} \right|=4OM\), do đó \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) nhỏ nhất khi OM nhỏ nhất.
Ta có \(O{{M}_{\min }}=O{{M}_{0}}=\left| OI-r \right|=5-\sqrt{22}\)
Vậy \({{\left| {{z}_{1}}+3{{z}_{2}} \right|}_{\min }}=4O{{M}_{0}}=20-4\sqrt{22}\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tô Hiến Thành lần 2