Nếu \({{\log }_{8}}a+{{\log }_{4}}{{b}^{2}}=5\) và \({{\log }_{4}}{{a}^{2}}+{{\log }_{8}}b=7\) thì giá trị của ab là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐiều kiện a > 0,b > 0.
\(\left\{ \begin{array}{l} {\log _8}a + {\log _4}{b^2} = 5\\ {\log _4}{a^2} + {\log _8}b = 7 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{1}{3}{\log _2}a + {\log _2}b = 5\\ {\log _2}a + \frac{1}{3}{\log _2}b = 7 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\log _2}a = 6\\ {\log _2}b = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = {2^6}.\\ b = {2^3}. \end{array} \right.\)
Vậy \(ab = {2^9}.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Trỗi lần 2
13/11/2024
241 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9