Trên mặt phẳng \(Oxy,\) gọi \(S\) là tập hợp các điểm \(M\left( x;y \right)\) với \(x,y\in \mathbb{Z},\left| x \right|\le 3,\left| y \right|\le 3. \) Lấy ngẫu nhiên một điểm \(M\) thuộc \(S. \) Xác suất để điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+3}{x-1}\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có số phần tử của tập \(S\) là \(\left| S \right|=7.7=49.\)
\(y = \frac{{x + 3}}{{x - 1}} = \frac{{x - 1 + 4}}{{x - 1}} = 1 + \frac{4}{{x - 1}}.\)
Để \(y \in Z \Rightarrow \left[ \begin{array}{l} x - 1 = \pm 1\\ x - 1 = \pm 2\\ x - 1 = \pm 4 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2;x = 0\\ x = 3;x = - 1\\ x = 5;x = - 3 \end{array} \right.\)
Vậy tập hợp các điểm nguyên trên đồ thị hàm số \(y=\frac{x+3}{x-1}\) thuộc tập \(S\) là \(\left\{ \left( -3;0 \right),\left( -1;-1 \right),\left( 0;3 \right),\left( 3;3 \right) \right\}.\)
Suy ra xác suất cần tìm là \(p=\frac{4}{49}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Phan Châu Trinh lần 3