Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(M = \left( d \right) \cap \left( \Delta \right) \Rightarrow M \in \left( d \right)\). Giả sử \(\,M\left( { - 2 + 2t;{\rm{ }}1 + t;{\rm{ }}1 - t} \right),\,\,t \in R\)
Do A là trung điểm MN nên \(N\left( {4 - 2t;\,\,5 - t;\,\,t + 3} \right)\).
Mà N thuộc (P) nên ta có phương trình \(2\left( {4 - 2t} \right) - \left( {5 - t} \right) + \left( {3 + t} \right) - 10 = 0\) ⇔ t = -2
Do đó M(-6;-13).
\(\overrightarrow {MA} = \left( {7;\,4;\, - 1} \right)\) là véc-tơchỉ phương của đường thẳng \(\Delta\).
Vậy phương trình đường thẳng cần tìm là \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\).