Trong không gian với tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = y + 1 = z - 3\) và mặt phẳng \(\left( P \right):x + 2y - z + 5 = 0\). Mặt phẳng (Q) chứa đường thẳng d và tạo với (P) một góc nhỏ nhất có phương trình
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(\Delta\) là giao tuyến giữa (P) và (Q). Khi đó, góc giữa (P), (Q) nhỏ nhất khi chỉ khi \(\Delta \bot d\).
Đường thẳng d đi qua điểm M(-1;-1;3) và có vectơ chỉ phương là \({\vec u_d} = \left( {2;1;1} \right)\).
Vectơ chỉ phương của \(\Delta\) là \({\vec u_\Delta } = \vec n \wedge {\vec u_d} = \left( {3; - 3; - 3} \right)\).
Vectơ pháp tuyến của là \({\vec n_Q} = {\vec u_d} \wedge {\vec u_\Delta } = \left( {0;9; - 9} \right)\)
Mặt phẳng (Q) đi qua M(-1;-1;3) và nhận vectơ pháp tuyến \(\vec n = \left( {0;1; - 1} \right)\) có phương trình \(y - z + 4 = 0\)