40 câu trắc nghiệm chuyên đề Hình học Oxyz ôn thi THPT QG năm 2019
-
Câu 1:
Cho A(2;0;0), B(0;2;0), C(0;0;2). Tập hợp các điểm M trên mặt phẳng Oxy sao cho \(\overrightarrow {MA} .\overrightarrow {MB} + {\overrightarrow {MC} ^2} = 3\) là
-
Câu 2:
Cho điểm A(3;5;0) và mặt phẳng \(\left( P \right):2x + 3y - z - 7 = 0\). Tìm tọa độ điểm M là điểm đối xứng với điểm A qua (P).
-
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai điểm A(1;5;0), B(3;3;6). Điểm \(M \in d\) sao cho tam giác MAB có diện tích nhỏ nhất có tọa độ là
-
Câu 4:
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;-1;1), B(2;1;-2), C(0;0;1). Gọi H(x;y;z) là trực tâm tam giác ABC thì giá trị \(x+y+z\) là kết quả nào dưới đây?
-
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có A(1;2;-1), C(3;-4;1), B'(2;-1;3) và D'(0;3;5). Giả sử tọa độ D(x;y;z) thì giá trị của \(x+2y-3z\) là kết quả nào dưới đây?
-
Câu 6:
Trong không gian với hệ tọa độ Oxyz, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( \alpha \right):2x + 3y + z - 17 = 0\)
-
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-3;7), B(0;4;-3) và C(4;2;5). Tìm tọa độ điểm M nằm trên mp (Oxy) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) có giá trị nhỏ nhất
-
Câu 8:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),\,\,B\left( {2;3; - 4} \right),\,\,C\left( { - 3;1;2} \right)\). Xét điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ điểm D.
-
Câu 9:
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'. Biết A(1;0;1), B(2;1;2), C'(4;5;-5), D(1;-1;1). Tọa độ của đỉnh A' là:
-
Câu 10:
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;- 2;- 1) và B(1; - 1;2). Tọa độ điểm M thuộc đoạn AB sao cho MA = 2MB là
-
Câu 11:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(M\left( {3;0;0} \right),\,N\left( {0;0;4} \right)\). Tính độ dài đoạn thẳng MN.
-
Câu 12:
Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;6;- 3) và các mặt phẳng \(\left( \alpha \right):x - 2 = 0,\,\left( \beta \right):y - 6 = 0,\,\left( \gamma \right):z + 3 = 0\). Tìm mệnh đề sai:
-
Câu 13:
Trong không gian với hệ tọa độ Oxyz, cho A(- 1;2;4), B(- 1;1;4), C(0;0;4). Tìm số đo của \(\widehat {ABC}\).
-
Câu 14:
Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;2;0} \right),B\left( {3; - 1;1} \right)\) và C(1;1;1). Tính diện tích S của tam giác ABC.
-
Câu 15:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(- 1;2;1), B(0;0;- 2), C(1;0;1), D(2;1;- 1). Tính thể tích tứ diện ABCD
-
Câu 16:
Cho mặt phẳng \(\left( \alpha \right):2x - y + 3z - 1 = 0\). Phương trình mặt phẳng \(\left( \beta \right)\parallel \left( \alpha \right)\) và \(\left( \beta \right)\) đi qua điểm M(1;-3;2)
-
Câu 17:
Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng trung trực của đoạn AB với \(A\left( {1; - 2;3} \right),B\left( {3;2;1} \right)\) là
-
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {2; - 1;3} \right),{\rm{ }}B\left( {2;0;5} \right),{\rm{ }}C\left( {0; - 3; - 1} \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A và vuông góc với BC
-
Câu 19:
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;- 5). Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) là:
-
Câu 20:
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;0;2} \right),B\left( {1;1;1} \right),C\left( {2;3;0} \right)\). Viết phương trình mặt phẳng (ABC)
-
Câu 21:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(12;8;6). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua các hình chiếu của M trên các trục tọa độ.
-
Câu 22:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + y - 3z + 2 = 0\). Viết phương trình mặt phẳng (Q) song song và cách (P) một khoảng bằng \(\frac{{11}}{{2\sqrt {14} }\).
-
Câu 23:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 16 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}\). Mặt phẳng nào trong các mặt phẳng sau chứa d và tiếp xúc với mặt cầu (S)
-
Câu 24:
Trong không gian với hệ tọa độ Oxyz, cho A(10;2 - 1) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{3}\). Phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất là
-
Câu 25:
Cho điểm M(2;1;- 1) và hai mặt phẳng \((P): x - y + z - 4 = 0, (Q):3x - y + z - 1 = 0\). Viết phương trình mặt phẳng (R) đi qua điểm M và chứa giao tuyến của hai mặt phẳng (P), (Q)
-
Câu 26:
Cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
-
Câu 27:
Trong không gian với hệ tọa độ Oxyz, cho M(1;2;1). Viết phương trình mặt phẳng (P) qua M cắt trục Ox, Oy, OZ lần lượt tại A, B, C sao cho \(\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
-
Câu 28:
Trong không gian với hệ tọa độ Oxyz cho G(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm G và cắt các trục tọa độ tại ba điểm phân biệt A, B, C sao cho G là trọng tam giác ABC.
-
Câu 29:
Trong không gian với hệ tọa độ Oxyz cho điểm E(8;1;1). Viết phương trình mặt phẳng \((\alpha )\) qua E và cắt nửa trục dương Ox, Oy, Oz lần lượt tại A, B, C sao cho OG nhỏ nhất với G là trọng tâm tam giác ABC.
-
Câu 30:
Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \(\frac{3}{2}\) là
-
Câu 31:
Trong không gian với tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = y + 1 = z - 3\) và mặt phẳng \(\left( P \right):x + 2y - z + 5 = 0\). Mặt phẳng (Q) chứa đường thẳng d và tạo với (P) một góc nhỏ nhất có phương trình
-
Câu 32:
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( {1;2;1} \right),B\left( {3;1;0} \right),C\left( {3; - 1;2} \right)\). Phương trình đường thẳng (d) qua A và vuông góc với mặt phẳng (ABC) là
-
Câu 33:
Cho hai đường thẳng \({d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 3}}{1};\,{d_2}:\left\{ \begin{array}{l}
x = 1 - t\\
y = 1 + 2t\\
z = - 1 + t
\end{array} \right.\) và điểm A(1;2;3). Đường thẳng \(\Delta\) đi qua A vuông góc với \(d_1\) và cắt \(d_2\) có phương trình là -
Câu 34:
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình: \({x^2} + {y^2} + {z^2} - 6x + 2y - 4z - 2 = 0\). Khi đó tọa độ tâm I và bán kính R là
-
Câu 35:
Trong không gian Oxyz, cho hai điểm \(M\left( {6;2; - 5} \right),N\left( { - 4;0;7} \right)\). Viết phương trình mặt cầu đường kính MN?
-
Câu 36:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua hai điểm \(A\left( {1;1;2} \right),\,\,B\left( {3;0;1} \right)\) và có tâm thuộc trục Ox. Phương trình của mặt cầu (S) là:
-
Câu 37:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;- 4), B(1;- 3;1), C(2;2;3). Tọa độ tâm I là:
-
Câu 38:
Bán kính mặt cầu tâm I(4;2;- 1) và tiếp xúc với mặt phẳng \((\alpha ):12x - 5z - 19 = 0\).
-
Câu 39:
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới dây là phương trình mặt cầu có tâm I(1;2;- 1) và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y - 2z - 8 = 0\)?
-
Câu 40:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\). Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ của điểm I.