Đề thi thử THPT QG môn Toán năm 2018
Trường THPT Trần Hưng Đạo
-
Câu 1:
Tìm các họ nghiệm của phương trình \({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\)
-
Câu 2:
Tìm giá trị lớn nhất của hàm số \(y = {\sin ^4}x{\cos ^6}x\)
-
Câu 3:
Một hộp đựng 15 viên bị khác nhau gòm 4 bo đpr, 5 bi trắng và 6 bi vàng. Tính số cách chọn 4 viên bi từ hộp đó sao cho không có đủ 3 màu
-
Câu 4:
Trong cụm thi để xét tốt nghiệm Trung học phổ thông thí sinh phải thi 4 môn trong đó có 3 môn bắt buộc là Toán, Văn, Ngoại ngữ và 1 môn do thí sinh tự chọn trong số các môn: Vật lý, Hóa học, Sinh học, Lịch sử và Địa lí. Trường X có 40 học sinh đăng kí dự thi, trong đó 10 học sinh chọn môn Vật lý và 20 học sinh chọn môn hóa học. Lấy ngẫu nhiên 3 học sinh bất kỳ của trường X, tính xác suất để 3 học sinh đó luôn có học sinh chọn môn Vật lý và học sinh chọn môn Hóa học.
-
Câu 5:
Tìm số các số hạng hữu tỉ trong khai triển \({\left( {\sqrt 3 + \sqrt[4]{5}} \right)^n}\) biết n thỏa mãn \(C_{4n + 1}^1 + C_{4n + 1}^2 + C_{4n + 1}^3 + ... + C_{4n + 1}^{2n} = {2^{496}} - 1\)
-
Câu 6:
Tính giới hạn của dãy số \(\mathop {\lim }\limits_{n \to \infty } \frac{{1.1! + 2.2! + ... + n.n!}}{{\left( {n + 1} \right)!}}\)
-
Câu 7:
Tính giới hạn của hàm số \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{x + 8}} - \sqrt {x + 4} }}{x}\)
-
Câu 8:
Tìm số điểm gián đoạn của hàm số \(y = \frac{{x + 4}}{{{x^4} - 10{x^2} + 9}}\)
-
Câu 9:
Tính giá trị gần đúng với 3 chữ số thập phân của \(\ln \left( {0,004} \right)\)
-
Câu 10:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA = x. Giả sử \(SA \bot \left( {ABC} \right)\) và góc giữa hai mặt (SBC) và (SCD) bằng \(120^\circ \). Tìm x
-
Câu 11:
Xác định m để hàm số \(y = {x^4} + \left( {2m - 1} \right){x^2} + m - 5\) có hai khoảng đồng biến dạng \(\left( {a,b} \right)\) và \(\left( {c, + \infty } \right)\) với b < c.
-
Câu 12:
Tìm giá trị của m để hàm số \(y = \frac{{{x^2} - 2mx + 3{m^2}}}{{2m - x}}\) nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)
-
Câu 13:
Tìm giá trị m để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x + 1 + 3x\) có cực đại, cực tiểu sao cho \({y_{CD}} + {y_{CT}} > 2\)
-
Câu 14:
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đạt cực đại tại x = -2 với giá trị cực đại là 64; đạt cực tiểu tại x = 3 với giá trị cực tiểu là -61. Khi đó giá trị của a + b + c + d bằng
-
Câu 15:
Khẳng định nào sau đây là sai?
-
Câu 16:
Cho x, y là hai số thực dương thay đổi và thỏa mãn điều kiện \(x + 2y - xy = 0\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{{x^2}}}{{4 + 8y}} + \frac{{{y^2}}}{{1 + x}}\)
-
Câu 17:
Tìm \(M \in \left( C \right):y = \frac{{2x + 1}}{{x - 1}}\) sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng hai lần khoảng các từ điểm M đến tiệm cận ngang.
-
Câu 18:
Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) có đồ thị (C). Gọi I là giao điểm tại hai tiềm cận. Có bao nhiêu điểm M thuộc (C) biết tiếp tuyến của (C) tại M cắt hai tiệm cận tại A, B tạo thành tam giác IAB có trung tuyến \(IN = \sqrt {10} \).
-
Câu 19:
Gọi I là giao điểm hai tiệm cận. viết phương trình tiếp tuyến d của đồ thị hàm số biết d cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B thỏa \(\cos BAI = \frac{{5\sqrt {26} }}{{26}}\)
-
Câu 20:
Một công ty bất động sản có 50 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ giá 2.000.000 đồng một tháng thì mọi căn hộ đều có người thuê và cứ mỗi lần tăng giá cho thuê mỗi căn hộ 100.000 đồng một tháng thì có thêm hai căn hộ bị bỏ trống. Hỏi muốn có thu nhập cao nhất, công ty đó phải cho thu mỗi căn hộ với giá bao nhiêu một tháng?
-
Câu 21:
Tìm số giá trị nguyên của m để phương trình \(\log _3^2\sqrt {\log _3^2x + 1} - 2m - 1 = 0\) có ít nhất một nghiệm thuộc đoạn \(\left[ {1;{3^{\sqrt 3 }}} \right]\)
-
Câu 22:
Cho hàm số \(y = \frac{{\ln x}}{x}\). Mệnh đề nào là mệnh đề đúng?
-
Câu 23:
Rút gọn biểu thức \(\frac{{\sqrt a .\sqrt[6]{a}}}{{\sqrt[3]{a}\sqrt[4]{a}}}\left( {a > 0} \right)\)
-
Câu 24:
Cho \(a = {\log _3}2,b = {\log _5}2\). Khi đó \({\log _{16}}60\) bằng:
-
Câu 25:
Cho \(a,b,c > 1\). Xét hai mệnh đề sau:
\(\left( I \right).{\log _a}b + {\log _b}c + {\log _c}a \ge 3\)
\(\left( {II} \right).{\log _a}{b^2} + {\log _b}{c^2} + {\log _c}{a^2} \ge 24\)
-
Câu 26:
Giá trị của biểu thức \(P = \sqrt {4\left[ {1 + \sqrt {1 + \left( {\frac{{{x^4} - 1}}{{2{x^2}}}} \right)} } \right]} \) tại \(x = \frac{1}{{\sqrt 2 }}\left( {{2^{\sqrt 2 }} + {2^{ - \sqrt 2 }}} \right)\)
-
Câu 27:
Năm 1992, người ta đã biết số \(p = {2^{756839}} - 1\) là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó) Hỏi rằng, viết trong hệ thập phân số nguyên tố đó có bao nhiêu chữ số? (Biết rằng \(\log 2 \approx 0,30102\))
-
Câu 28:
Cho \(x,y,z > 0\) thỏa mãn điều kiện \(\frac{{x\left( {y + z - x} \right)}}{{\log x}} = \frac{{y\left( {z + x - y} \right)}}{{\log y}} = \frac{{z\left( {x + y - z} \right)}}{{\log z}}\)
Hỏi mệnh đề nào sau đây là đúng?
-
Câu 29:
Giả sử \(\int\limits_{ - 1}^2 {\frac{{{e^x}dx}}{{2 + {e^x}}}} = \ln \frac{{ae + {e^3}}}{{ae + b}}\) với a, b là các số nguyên dương. Tính giá trị của biểu thức \(P = \sin \left( {\frac{{\pi b}}{a} + 2017\pi } \right) + \cos \left( {\frac{{\pi b}}{a} - \sin 2018\pi } \right)\)
-
Câu 30:
Cho \(\int {\frac{1}{{\sqrt {mx + {m^2} - 8} }}} dx = \frac{2}{3}\sqrt {3x + 1} + C\). Tính giá trị của tích phân \(I = \int\limits_{m - 2}^e {x{{\ln }^2}x{\rm{d}}x} \)
-
Câu 31:
Cho hàm số \(g\left( x \right) = \int\limits_x^{{x^2}} {\frac{{dt}}{{\ln t}}} \) với x > 1. Tìm tập giá trị T của hàm số
-
Câu 32:
Ở một thành phố nhiệt độ sau t giờ, tính từ 8 giờ sáng được mô hình hóa bởi hàm \(T\left( t \right) = 50 + 14\sin \frac{{\pi t}}{2}\). Tìm nhiệt độ trung bình trong khoảng thời gian từ 8 giờ sáng đến 8 giờ tối. (Lấy kết quả gần đúng)
-
Câu 33:
Tính thể tích V của vật thể tròn xoay sinh ra bởi hình phẳng giới hạn bởi đường cong \(y = \sqrt x \), trục tung và đường thẳng y =2 quay quanh trục Oy.
-
Câu 34:
Trong mặt phẳng Oxy, cho prabol \(\left( P \right):y = {x^2}\). Viết phương trình đường thẳng d đi qua \(M\left( {1;3} \right)\) sao cho diện tích hình phẳng giới hạn bởi (P) và d đạt giá trị nhỏ nhất.
-
Câu 35:
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ {0;2a} \right]\). Hỏi mệnh đề nào sau đây đúng?
-
Câu 36:
Hai số phức z và \( - \frac{1}{{\overline z }}\) có điểm biểu diễn trong mặt phẳng phức là A, B. Khi đó
-
Câu 37:
Số phức z thỏa mãn \(\frac{{z - 2i}}{{z - 2}}\) là số ảo. Tìm giá trị lớn nhất của biểu thức \(P = \left| {z - 1} \right| + \left| {z - i} \right|\)
-
Câu 38:
Cho số phức \(z = \frac{{ - 1 + \sqrt 3 i}}{2}\). Tính giá trị của biểu thức
\(P = {\left( {z + \frac{1}{z}} \right)^{2016}} + {\left( {{z^2} + \frac{1}{{{z^2}}}} \right)^{2017}} + {\left( {{z^3} + \frac{1}{{{z^3}}}} \right)^{2018}} + {\left( {{z^4} + \frac{1}{{{z^4}}}} \right)^{2019}} - {2^{2018}}\)
-
Câu 39:
Tìm số phức z có mô đun nhỏ nhất thỏa mãn \(\left| {iz - 3} \right| = \left| {z - 2 - i} \right|\)
-
Câu 40:
Cho lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng \(60^o\); cạnh AB = a. Tính thể tích khối đa diện ABCC'B'
-
Câu 41:
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy AB = 2a, góc \(ASB = 2\alpha \left( {{0^0} < \alpha < 90^\circ } \right)\). Gọi V là thể tích của khối chóp. Kết quả nào sau đây sai?
-
Câu 42:
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi canh a, \(\angle BCD = 120^\circ \) và \(AA' = \frac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'B'C'D'
-
Câu 43:
Cho lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng \(30^o\). Biết hình chiếu vuông góc của A’ trên (ABC) trùng với trung điểm cạnh BC. Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A'.ABC
-
Câu 44:
Cho hình chữ nhật ABCD có \(AB = 2AD = 2\). Quay hình chữ nhật ABCD lần lượt quanh AD và AB ta được hai hình trụ tròn xoay có thể tích lần lượt là \({V_1},{V_2}\). Hệ thức nào sau đây là đúng?
-
Câu 45:
Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có \(\angle BAC = 75^\circ ,\,\,\angle ACB = 60^\circ \). Kẻ BH vuông góc với AC. Quay tam giác ABC quanh AC thì tam giác BHC tạo thành hình nón tròn xoay. Tính diện tích xung quanh của hình nón tròn xoay này.
-
Câu 46:
Cho hình lập phương ABCD.EFGH với \(\overrightarrow {AE} = \overrightarrow {BF} = \overrightarrow {CG} = \overrightarrow {HD} \). Gọi \(M,N,P,Q\) lần lượt là trung điểm bốn cạnh \(BF,FE,DH,DC\). Hỏi mệnh đề nào đúng?
-
Câu 47:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - {m^2} - 2m + 5 = 0\) và mặt phẳng \(\left( \alpha \right):x + 2y - 2{\rm{z}} + 3 = 0\). Tìm m để giao tuyến giữa \((\alpha)\) và (S) là một đường tròn
-
Câu 48:
Trong không gian Oxyz, cho bốn điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0;0;6} \right),D\left( {2;4;6} \right)\).
ét các mệnh đề sau:(I). Tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MC} + \overrightarrow {MD} } \right|\) là một mặt phẳng
(II). Tập hợp các điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right| = 4\) là một mặt cầu tâm \(I\left( {1;2;3} \right)\) và bán kính R = 1.
-
Câu 49:
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1 - t\\ y = 3 + 3t\\ z = 3 + 2t \end{array} \right.\) và mặt phẳng \(\left( \alpha \right):x + 2y - 2z - 1 = 0\). Tìm vị trí của điểm M trên d sao cho khoảng cách từ M đến \((\alpha)\) bằng 3
-
Câu 50:
Trong không gian Oxyz có 6 mặt phẳng sau
\(\left( {{\alpha _1}} \right):2x - y + z - 4 = 0\)
\(\left( {{\alpha _2}} \right):x + z - 3 = 0\)
\(\left( {{\beta _1}} \right):3x + y - 7 = 0\)
\(\left( {{\beta _2}} \right):2x + 3z - 5 = 0\)
\(\left( {{\gamma _1}} \right):x - my + 2z - 3 = 0\)
\(\left( {{\gamma _2}} \right):2x + y + z - 6 = 0\)
Gọi \({d_1},{d_2},{d_3}\) lần lượt là giao tuyến của các cặp mặt phẳng \(\left( {{\alpha _1}} \right)\) và \(\left( {{\alpha _2}} \right);\left( {{\beta _1}} \right)\) và \(\left( {{\beta _2}} \right);\left( {{\gamma _1}} \right)\) và \(\left( {{\gamma _2}} \right)\). Tìm m để \({d_1},{d_2},{d_3}\) đồng quy.