Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Hai Bà Trưng
-
Câu 1:
Số cách sắp xếp 5 học sinh nam, 2 học sinh nữ vào ghế hàng ngang có 7 chỗ ngồi?
-
Câu 2:
Cho cấp số nhân \(\left(u_{n}\right)\) có \({{u}_{1}}=2\) và \({{u}_{4}}=54\). Giá trị của công bội q bằng
-
Câu 3:
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
-
Câu 4:
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là:
-
Câu 5:
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
Hàm số f(x) có bao nhiêu điểm cực trị?
-
Câu 6:
Tiệm cận ngang của đồ thị hàm số \(y=\frac{x-5}{2x-1}\) là đường thẳng:
-
Câu 7:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên:
-
Câu 8:
Đồ thị của hàm số \(y={{x}^{3}}-3x+2\) cắt trục hoành tại bao nhiêu điểm
-
Câu 9:
Với a là số thực dương tùy ý, \({{\log }_{2}}\left( 32{{a}^{2}} \right)\) bằng
-
Câu 10:
Với x>0, đạo hàm của hàm số \(y=\ln 2x\) là:
-
Câu 11:
Với a là số thực dương tùy ý, \({{a}^{2}}.{{a}^{3}}\) bằng
-
Câu 12:
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
-
Câu 13:
Nghiệm của phương trình \({\log _5}(4x - 3) = 2\) là:
-
Câu 14:
Cho hàm số \(f(x)={{x}^{4}}+2x-4\). Trong các khẳng đinh sau, khẳng định nào đúng?
-
Câu 15:
Cho hàm số \(f\left( x \right)=\frac{1}{{{\cos }^{2}}4x}\). Trong các khẳng định sau, khẳng định nào đúng?
-
Câu 16:
Nếu \(\int\limits_{2}^{3}{f\left( x \right)\text{d}x}=4\) và \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=7\) thì \(\int\limits_{3}^{5}{f\left( x \right)\text{d}x}\) bằng
-
Câu 17:
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
-
Câu 18:
Cho số phức z=7-2i. Khẳng định nào đúng?
-
Câu 19:
Cho hai số phức \({{z}_{1}}=2-3i\) và \({{z}_{2}}=-1+i\). Số phức \({{z}_{1}}{{z}_{2}}\) bằng
-
Câu 20:
Cho z+5-7i=0, trên mặt phẳng tọa độ, điểm biểu diễn số phức z có tọa độ là
-
Câu 21:
Một khối lăng trụ có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối lăng trụ đó bằng
-
Câu 22:
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
-
Câu 23:
Công thức tính thể tích V của khối nón có bán kính đáy 3r và chiều cao h là:
-
Câu 24:
Một hình trụ có đường kính đáy bằng chiều cao và độ dài đường sinh \(l = 6{\rm{ cm}}\). Diện tích toàn phần của hình trụ đó bằng
-
Câu 25:
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
-
Câu 26:
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
-
Câu 27:
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,2x-3y+z-4=0\) không đi qua điểm nào dưới đây?
-
Câu 28:
Trong không gian Oxyz, cho điểm \(M\left( 1;\,-2;\,1 \right)\). Đường thẳng song song với đường thẳng OM có vectơ chỉ phương là vectơ nào dưới đây?
-
Câu 29:
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
-
Câu 30:
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
-
Câu 31:
Tìm giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{x}{x+2}\) trên đoạn \(\left[ 1;4 \right].\)
-
Câu 32:
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
-
Câu 33:
Cho tích phân \(\int\limits_{a}^{b}{f\left( x \right)}\,\text{d}x=2\) và \(\int\limits_{c}^{b}{f\left( x \right)}\,\text{d}x=3\) với a<b<c. Tính tích phân \(K=\int\limits_{a}^{c}{f\left( x \right)}\,\text{d}x\).
-
Câu 34:
Trong mặt phẳng tọa độ Oxy, số phức liên hợp của số phức \(z=\left( 1+2i \right)\left( 1-i \right)\) có điểm biểu diễn là điểm nào sau đây?
-
Câu 35:
Cho tứ diện S.ABC có các cạnh SA, SB; SC đôi một vuông góc và SA=SB=SC=1. Tính \(\cos \alpha \), trong đó \(\alpha \) là góc giữa hai mặt phẳng \(\left( SBC \right)\) và \(\left( ABC \right)\)?
-
Câu 36:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm S đến mặt phẳng \(\left( ABC \right)\).
-
Câu 37:
Trong không gian \(\text{O}xyz\), cho điểm \(A\left( 3;-1;1 \right)\) và mặt phẳng \(\left( P \right):4x-3y+5=0\). Mặt cầu \(\left( S \right)\) có tâm A và tiếp xúc với mặt phẳng \(\left( P \right)\) có phương trình là
-
Câu 38:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x-y+z-3=0\) và điểm \(M\left( 3;\,-1;\,2 \right)\). Đường thẳng \(\Delta \) qua M và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là:
-
Câu 39:
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) như hình vẽ.
Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021\). Mệnh đề nào dưới đây đúng?
-
Câu 40:
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
-
Câu 41:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 3{x^2} + 5x{\rm{, khi }}x \ge 1\\ 5 - 3x,{\rm{ khi }}x < 1 \end{array} \right.\).
Tính tích phân \(I = 3\int\limits_0^{\frac{\pi }{2}} {\cos xf\left( {\sin x} \right){\rm{d}}x} + 2\int\limits_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \).
-
Câu 42:
Có bao nhiêu số phức z thỏa mãn điều kiện \(\left| \bar{z}+1-2i \right|=\left| z+3+4i \right|\) và \(\frac{\bar{z}-2i}{z+i}\) là số thuần ảo?
-
Câu 43:
Cho hình chóp S.ABCD có \(SA\bot \left( ABCD \right)\), SA=2a, ABCD là hình thang vuông tại A và D, \(AD=DC=\frac{1}{2}AB\). Góc giữa mặt phẳng \(\left( SBC \right)\) và mặt phẳng \(\left( ABCD \right)\) bằng \(45{}^\circ \). Tính thể tích khối chóp S.ABCD.
-
Câu 44:
Một người muốn làm cho con gái 1 chiếc lều từ vải và các ống nhựa PVC có dạng hình chóp tứ giác đều như hình vẽ.
Biết rằng nếu em bé đi dọc theo 1 cạnh của chiếc lều với vận tốc \(0,3\,\text{m/s}\) thì phải mất \(6\,\text{s}\), và góc giữa mỗi ống nhựa với mặt sàn nhà là \(60{}^\circ \). Hỏi người đó cần dùng hết ít nhất bao nhiêu mét vuông vải để may chiếc lều trên? (Chỉ dùng vải để may các mặt bên của chiếc lều)
-
Câu 45:
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
-
Câu 46:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình dưới. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y=\left| f\left( x-2 \right)+m \right|\) có 5 điểm cực trị?
-
Câu 47:
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
-
Câu 48:
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y=\left| {{x}^{2}}-1 \right|\) và y=k,0<k<1. Tìm k để diện tích của hình phẳng \(\left( H \right)\) gấp hai lần diện tích hình phẳng được kẻ sọc trong hình vẽ bên. Khi đó k nhận giá trị nào dưới đây?
-
Câu 49:
Trong không gian \(Oxy\text{z}\), cho mặt cầu \(\left( S \right)\): {{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{z}^{2}}=4\) và hai điểm \(A\left( -1;\,2;\,0 \right), B\left( 2;\,5;\,0 \right)\). Gọi K là điểm thuộc \(\left( S \right)\) sao cho KA+2KB nhỏ nhất. Phương trình mặt phẳng đi qua ba điểm \(K,\,A,\,B\) có dạng ax+by+z+c=0. Giá trị của a+b+c là
-
Câu 50:
Cho hình (H) giới hạn bởi đồ thị hàm số x = f(y), trục tung và hai đường thẳng y = a, y = a, y = b. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy là: