Cho phương trình \(\cos 2x - \left( {2m + 1} \right)\cos x + m + 1 = 0\). Tìm các giá trị của m để phương trình có nghiệm \(x \in \left( {{\pi \over 2};{{3\pi } \over 2}} \right)\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiDo các nghiệm của phương trình \(\cos x = {1 \over 2}\) không thuộc khoảng \(\left( {{\pi \over 2};{{3\pi } \over 2}} \right)\)
Nên phương trình đã cho có nghiệm \(x \in \left( {{\pi \over 2};{{3\pi } \over 2}} \right)\) khi và chỉ khi phương trình \(\cos x = m\) có nghiệm \(x \in \left( {{\pi \over 2};{{3\pi } \over 2}} \right)\).
Điều đó xảy ra nếu và chỉ nếu \( - 1 < m < 0\)
ADMICRO
YOMEDIA
ZUNIA9