Cho tứ diện OABC trong đó OA, OB, OC đôi một vuông góc với nhau, OA = OB = OC = a. Gọi I là trung điểm BC. Khoảng cách giữa AI và OC bằng bao nhiêu?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiGọi J là trung điểm OB. Kẻ OH vuông góc AJ tại H.
Tam giác AOJ vuông tại O, có OH là đường cao
\(OH = \frac{{OA.OJ}}{{\sqrt {O{A^2} + O{J^2}} }} = \frac{{a.\frac{a}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} }} = \frac{a}{{\sqrt 5 }}\)
Ta có: OC // IJ nên OC // (AIJ)
Do đó:
\(d\left( {AI,OC} \right){\rm{ }} = {\rm{ }}d\left( {OC,\left( {AIJ} \right)} \right){\rm{ }} = {\rm{ }}d\left( {O,\left( {AIJ} \right)} \right) = OH = \frac{{a\sqrt 5 }}{5}.\)
ADMICRO
YOMEDIA
ZUNIA9