Tích phân \(I=\int_{0}^{\frac{\pi}{4}} \frac{2 x-\sin x}{2-2 \cos x} d x\) có giá trị là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(I=\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \frac{2 x-\sin x}{2-2 \cos x} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{x}{1-\cos x} d x-\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin x}{1-\cos x} d x\)
Xét \(I_{1}=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{x}{1-\cos x} d x=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{x}{\sin ^{2} \frac{x}{2}} d x\)
Đặt \(\left\{\begin{array}{l} u=x \\ d v=\frac{1}{\sin ^{2} \frac{x}{2}} d x \end{array}\right. \Rightarrow\left\{\begin{array}{l} d u=d x \\ v=-2 \cot \frac{x}{2} \end{array}\right.\)
\(\Rightarrow I_{1}=\frac{1}{2}\left[\left.\left(-2 x \cdot \cot \frac{x}{2}\right)\right|_{\frac{\pi}{3}} ^{\frac{\pi}{2}}+2 \int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \frac{x}{2} d x\right]=\frac{1}{2}\left[-\pi+\frac{2 \pi \sqrt{3}}{3}+4 \ln \sqrt{2}\right]\)
Xét \(I_{2}=\frac{1}{2} \int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin x}{1-\cos x} d x\)
Đặt \(t=1-\cos x \Rightarrow d t=\sin x d x\)
Đổi cận \(\left\{\begin{array}{l} x=\frac{\pi}{3} \Rightarrow t=\frac{1}{2} \\ x=\frac{\pi}{2} \Rightarrow t=1 \end{array}\right.\)
\(\Rightarrow I_{2}=\frac{1}{2} \int_{\frac{1}{2}}^{1} \frac{1}{t} d t=\left.\frac{1}{2}(\ln |t|)\right|_{\frac{1}{2}} ^{1}=\frac{1}{2} \ln 2\)
\(I=I_{1}-I_{2}=\frac{1}{2}\left(-\pi+\frac{2 \pi \sqrt{3}}{3}+4 \ln \sqrt{2}-\ln 2\right)\)