Tính giá trị \( \mathop {\lim }\limits_{x \to + \infty } \left( {x + 5} \right)\sqrt {\frac{x}{{{x^3} - 1}}}\) có kết quả là?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có:
\( \mathop {\lim }\limits_{x \to + \infty } \left( {x + 5} \right)\sqrt {\frac{x}{{{x^3} - 1}}} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{x{{\left( {x + 5} \right)}^2}}}{{{x^3} - 1}}} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{{x^3} + 10{x^2} + 25x}}{{{x^3} - 1}}} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{1 + \frac{{10}}{x} + \frac{{25}}{{{x^2}}}}}{{1 - \frac{1}{{{x^3}}}}}} = 1\)
Chọn B.
ADMICRO
YOMEDIA
ZUNIA9