Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEamaabmaabaGaaGOmaiabgUcaRiaadwgadaah % aaWcbeqaaiaadIhaaaaakiaawIcacaGLPaaacaqGKbGaamiEaaWcba % GaaGimaaqaaiaaigdaa0Gaey4kIipaaaa!43CB! I = \int\limits_0^1 {x\left( {2 + {e^x}} \right){\rm{d}}x} \)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadwhacqGH9aqpcaWG4baabaGaamizaiaadAhacqGH9aqpdaqa % daqaaiaaikdacqGHRaWkcaWGLbWaaWbaaSqabeaacaWG4baaaaGcca % GLOaGaayzkaaGaamizaiaadIhaaaGaay5EaaGaeyO0H49aaiqaaqaa % beqaaiaadsgacaWG1bGaeyypa0JaamizaiaadIhaaeaacaWG2bGaey % ypa0JaaGOmaiaadIhacqGHRaWkcaWGLbWaaWbaaSqabeaacaWG4baa % aaaakiaawUhaaaaa!532D! \left\{ \begin{array}{l} u = x\\ dv = \left( {2 + {e^x}} \right)dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = 2x + {e^x} \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maaeiaabaGaamiEamaabmaabaGaaGOmaiaadIhacqGHRaWkcaWG % LbWaaWbaaSqabeaacaWG4baaaaGccaGLOaGaayzkaaaacaGLiWoada % qhaaWcbaGaaGimaaqaaiaaigdaaaGccqGHsisldaWdXbqaamaabmaa % baGaaGOmaiaadIhacqGHRaWkcaWGLbWaaWbaaSqabeaacaWG4baaaa % GccaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaaicdaaeaacaaIXaaa % niabgUIiYdGccqGH9aqpdaabcaqaaiaadIhadaqadaqaaiaaikdaca % WG4bGaey4kaSIaamyzamaaCaaaleqabaGaamiEaaaaaOGaayjkaiaa % wMcaaaGaayjcSdWaa0baaSqaaiaaicdaaeaacaaIXaaaaOGaeyOeI0 % YaaqGaaeaadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaWGLbWaaWbaaSqabeaacaWG4baaaaGccaGLOaGaayzkaaaaca % GLiWoadaqhaaWcbaGaaGimaaqaaiaaigdaaaGccqGH9aqpdaqadaqa % aiaaikdacqGHRaWkcaWGLbaacaGLOaGaayzkaaGaeyOeI0YaaeWaae % aacaaIXaGaey4kaSIaamyzaiabgkHiTiaaigdaaiaawIcacaGLPaaa % cqGH9aqpcaaIYaGaaiOlaaaa!73A4! I = \left. {x\left( {2x + {e^x}} \right)} \right|_0^1 - \int\limits_0^1 {\left( {2x + {e^x}} \right)dx} = \left. {x\left( {2x + {e^x}} \right)} \right|_0^1 - \left. {\left( {{x^2} + {e^x}} \right)} \right|_0^1 = \left( {2 + e} \right) - \left( {1 + e - 1} \right) = 2.\)