Cho cấp số cộng \(\left( {{u_n}} \right)\) thỏa \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\). Tính \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\).
Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Khi đó : \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hoặc \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2} = n{u_1} + \frac{{n\left( {n - 1} \right)}}{2}d\) .
Lời giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d - {u_1} - 2d + {u_1} + 4d = 10\\{u_1} + 3d + {u_1} + 5d = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\2{u_1} + 8d = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).
Ta có: \({u_1}\), \({u_4}\), \({u_7}\), \({u_{10}}\), …,\({u_{2011}}\) là cấp số cộng có \(\left\{ \begin{array}{l}{u_1} = 1\\d = 9\\n = 671\end{array} \right.\)
Do đó: \(S = \frac{{671}}{2}\left( {2.1 + 670.9} \right) = 2023736\).
Đáp án A
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo