Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại hai điểm phân biệt A, B thỏa mãn OA = 4OB. Tổng các phần tử của S bằng:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét phương trình hoành độ giao điểm \({x^2} + 5x + 2m = 0\) (*).
Để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại 2 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt \( \Leftrightarrow \Delta = 25 - 8m > 0\) \( \Leftrightarrow m < \dfrac{{25}}{8}\).
Gọi \({x_1};{x_2}\) là hai nghiệm phân biệt của phương trình (*) \( \Rightarrow A\left( {{x_1};0} \right)\) và \(B\left( {{x_2};0} \right)\).
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}{x_2} = 2m\end{array} \right.\) (**).
Theo bài ra ta có:
OA = 4OB
\( \Leftrightarrow \left| {{x_1}} \right| = 4\left| {{x_2}} \right| \Leftrightarrow \left[ \begin{array}{l}{x_1} = 4{x_2}\\ - {x_1} = 4{x_2}\end{array} \right.\)
TH1; \({x_1} = 4{x_2}\), thay vào hệ (**) ta có:
\(\left\{ \begin{array}{l}{x_2} + 4{x_2} = 5\\{x_2}.4{x_2} = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 1\\4 = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 1\\m = 2\,\,\left( {tm} \right)\end{array} \right.\).
TH2; \( - {x_1} = 4{x_2}\), thay vào hệ (**) ta có:
\(\left\{ \begin{array}{l}{x_2} - 4{x_2} = 5\\{x_2}.\left( { - 4{x_2}} \right) = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = - \dfrac{5}{3}\\ - \dfrac{{100}}{9} = 2m\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_2} = - \dfrac{5}{3}\\m = - \dfrac{{50}}{9}\,\,\left( {tm} \right)\end{array} \right.\).
\( \Rightarrow S = \left\{ {2; - \dfrac{{50}}{9}} \right\}\).
Vậy tổng các phần tử của S bằng \(2 + \left( { - \dfrac{{50}}{9}} \right) = - \dfrac{{32}}{9}\).
Đáp án D.