Tìm giá trị nhỏ nhất của \(A = {x^2} - 2x + 3\) với mọi số thực \(x \in Z\).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 8
Lời giải:
Báo saiTa có: \({x^2} - 2x + 3 = {x^2} - 2x + 1 + 2 = {(x - 1)^2} + 2\)
Ta thấy \({(x - 1)^2} \ge 0\) với mọi \(x\), do đó \({(x - 1)^2} + 2 \ge 2\) với mọi \(x\).
Vậy \(A = {x^2} - 2x + 3\) đạt giá trị nhỏ nhất là \(2\).
Đẳng thức xảy ra khi \(x - 1 = 0\), hay \(x = 1\).
Chọn B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9