Tính giá trị của biểu thức \(B = {x^2} + 2x + 1 + {y^2} - 4y + 4\) tại \(x = 99\) và \(y = 102\).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 8
Lời giải:
Báo sai\(B = {x^2} + 2x + 1 + {y^2} - 4y + 4 = \left( {{x^2} + 2x + 1} \right) + \left( {{y^2} - 4y + 4} \right) = {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2}\)
Thay \(x = 99\) và \(y = 102\)vào biểu thức ta được:
\(B = {(99 + 1)^2} + {(102 - 2)^2} = {100^2} + {100^2} = 10000 + 10000 = 20000\)
Vậy giá trị của biểu thức \(B = {x^2} + 2x + 1 + {y^2} - 4y + 4\) tại \(x = 99\) và \(y = 102\) là \(20000\) .
Chọn A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9