Đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 2}}\) có đường tiệm cận đứng là đường thẳng nào sau đây?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo sai\(y = \dfrac{{2x - 1}}{{x + 2}}\)
Vì \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {2x - 1} \right) \) \(= 2.\left( { - 2} \right) - 1 = - 5 < 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x + 2} \right) = 0\\x + 2 > 0,\forall x > - 2\end{array} \right.\)
nên \(\mathop {\lim }\limits_{x \to - {2^ + }} \dfrac{{2x - 1}}{{x + 2}} = - \infty \)
Tương tự \(\mathop {\lim }\limits_{x \to - {2^ - }} \dfrac{{2x - 1}}{{x + 2}} = + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.
ADMICRO
YOMEDIA
ZUNIA9