Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScqGHsislcaaIXa % aaaa!3FDF! {\log _{\frac{1}{2}}}{x^2} \ge - 1\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScqGHsislcaaIXa % Gaeyi1HS9aaiqaaqaabeqaaiaadIhadaahaaWcbeqaaiaaikdaaaGc % cqGH+aGpcaaIWaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgs % MiJoaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGL % PaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaOGaay5EaaGaeyi1HS % 9aaiqaaqaabeqaaiaadIhacqGHGjsUcaaIWaaabaGaamiEamaaCaaa % leqabaGaaGOmaaaakiabgsMiJkaaikdaaaGaay5EaaGaeyi1HS9aai % qaaqaabeqaaiaadIhacqGHGjsUcaaIWaaabaGaeyOeI0YaaOaaaeaa % caaIYaaaleqaaOGaeyizImQaamiEaiabgsMiJoaakaaabaGaaGOmaa % WcbeaaaaGccaGL7baacqGHuhY2caWG4bGaeyicI48aaKGeaeaacqGH % sisldaGcaaqaaiaaikdaaSqabaGccaGG7aGaaGimaaGaay5waiaawM % caaiabgQIiipaajadabaGaaGimaiaacUdadaGcaaqaaiaaikdaaSqa % baaakiaawIcacaGLDbaacaGGUaaaaa!79A4! {\log _{\frac{1}{2}}}{x^2} \ge - 1 \Leftrightarrow \left\{ \begin{array}{l} {x^2} > 0\\ {x^2} \le {\left( {\frac{1}{2}} \right)^{ - 1}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ne 0\\ {x^2} \le 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ne 0\\ - \sqrt 2 \le x \le \sqrt 2 \end{array} \right. \Leftrightarrow x \in \left[ { - \sqrt 2 ;0} \right) \cup \left( {0;\sqrt 2 } \right].\)