Tìm các giá trị của tham số m để đồ thị hàm số \(y = 2{x^3} + 3\left( {m - 3} \right){x^2} + 11 - 3m\) có hai điểm cực trị. Đồng thời hai điểm cực trị đó và điểm C(0;-1) thẳng hàng
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo sai
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 3 - m
\end{array} \right.\)
Hàm số có 2 cực trị 3
Khi đó đồ thị hàm số đã cho có 2 điểm cực trị A(0;11-3m)
\(\begin{array}{l}
B\left( {3 - m;{m^3} - 9{m^2} + 24m - 16} \right)\\
\overrightarrow {AB} = \left( {3 - m;{{\left( {3 - m} \right)}^3}} \right)
\end{array}\)
Phương trình đt AB: \({\left( {3 - m} \right)^2}x + y - 11 + 3m = 0\)
A, B, C thẳng hàng \( \Leftrightarrow C \in AB\)
Hay \( - 1 - 11 + 3m = 0 \Leftrightarrow m = 4\)
ADMICRO
YOMEDIA
ZUNIA9