Trong tất cả các giá trị của tham số m để hàm số \(y=\frac{1}{3}x^3+mx^2–mx–m \) đồng biến trên R, giá trị nhỏ nhất của m là?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có \(y′=x^2+2mx–m\).
Để hàm số đã cho luôn đồng biến trên R thì Δ′≤0 với mọi m \(\Leftrightarrow m^2+m\le 0 \Leftrightarrow–1\le m\le0\)
Vậy giá trị nhỏ nhất của m thỏa mãn là m=−1.
ADMICRO
YOMEDIA
ZUNIA9