Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWc % aaqaaiabgkHiTiaaikdaaeaacqGHsislcaWG4bGaey4kaSIaaGymaa % aaaaa!41AF! y = f\left( x \right) = \frac{{ - 2}}{{ - x + 1}}\) có tính chất
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % Gaeyypa0JabmOzayaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa % eyypa0ZaaSaaaeaacqGHsislcaaIYaaabaWaaeWaaeaacqGHsislca % WG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm % aaaaaaGccqGH8aapcaaIWaGaaGPaVlaaykW7caaMc8UaeyiaIiIaam % iEaiabgcMi5kaaigdaaaa!4EF1! y' = f'\left( x \right) = \frac{{ - 2}}{{{{\left( { - x + 1} \right)}^2}}} < 0\,\,\,\forall x \ne 1\)
Suy ra hàm số nghịch biến trên từng khoảng xác định.