Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;4} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;4} \right]\). Tính \(M + m\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ { - 3;4} \right]\) lần lượt là giá trị của điểm cao nhất và điểm thấp nhất của đồ thị hàm số trên \(\left[ { - 3;4} \right]\).
Lời giải chi tiết:
Dựa vào đồ thị hàm số ta dễ dàng suy ra được \(M = \mathop {\max }\limits_{\left[ { - 3;4} \right]} f\left( x \right) = 5;{\mkern 1mu} {\mkern 1mu} m = \mathop {\min }\limits_{\left[ { - 3;4} \right]} f\left( x \right) = 0\).
Vậy \(M + m = 5 + 0 = 5\).
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2023 - 2024
Trường THPT Bắc Ninh