Đồ thị hàm số \(y = - 2{x^3} + 3{x^2} - 7\) có 2 điểm cực trị là A và B. Tính diện tích tam giác OAB (với O là gốc tọa độ).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có: \(y' = - 6{x^2} + 6x\)
\(y' = 0 \Leftrightarrow - 6{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1 \end{array} \right.\)
Các điểm cực trị của đồ thị là \(A\left( {0; - 7} \right)\) và \(B\left( {1; - 6} \right)\).
Do đó: \(\overrightarrow {OA} = \left( {0; - 7} \right)\), \(\overrightarrow {OB} = \left( {1; - 6} \right)\)
Vậy \({S_{\Delta OAB}} = \dfrac{1}{2}\left| {0.\left( { - 6} \right) - 1.\left( { - 7} \right)} \right| = \dfrac{7}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9