Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;1} \right)\) và cắt mặt phẳng \(\left( P \right):2x - y + 2z + 7 = 0\) theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu \(\left( S \right)\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiMặt phẳng (P) cắt mặt cầu theo 1 đường tròn có đường kính bằng 8 nên có bán kính r = 4.
Ta có: \(d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 - 2 + 2.1 + 7} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 3\)
Gọi R là bán kính mặt cầu (S), áp dụng định lí Pytago ta có: \({R^2} = {r^2} + {d^2} = {4^2} + {3^2} = 25\)
Vậy phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 25\).