Cho hai số thực a, b thỏa mãn các điều kiện \({a^2} + {b^2} > 1\) và \({\log _{{a^2} + {b^2}}}\left( {a + b} \right) \ge 1\). Giá trị lớn nhất của biểu thức P = 2a + 4b – 3 là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo \({a^2} + {b^2} > 1\) nên \({\log _{{a^2} + {b^2}}}\left( {a + b} \right) \ge 1 \Leftrightarrow a + b \ge {a^2} + {b^2} \Leftrightarrow {\left( {a - \frac{1}{2}} \right)^2} + {\left( {b - \frac{1}{2}} \right)^2} \le \frac{1}{2}.\)
Gọi \(\left( C \right):{\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{1}{2}.\)
Ta có \(P = 2a + 4b - 3 \Leftrightarrow 2a + 4b - 3 - P = 0\)
Đặt \(\Delta p:2x + 4y - 3 - P = 0\). Để P đạt giá trị lớn nhất thì \(\Delta p\) tiếp xúc với (C).
Ta có \(d\left( {I,\Delta p} \right) = \frac{{\left| {2{x_0} + 4{y_0} - 3 - P} \right|}}{{\sqrt {{2^2} + {4^2}} }} = \frac{1}{{\sqrt 2 }} \Leftrightarrow \left| { - P} \right| = \sqrt {10} .\)
Vậy P lớn nhất bằng \(\sqrt {10} \).