Cho hai số thực dương x y ; thỏa mãn \(\log _{3} x+x y=\log _{3}(8-y)+x(8-x)\). Giá trị nhỏ nhất của biểu thức \(P=x^{3}-\left(x^{2}+y^{2}\right)-16 x\) bằng?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐk: \(\left\{\begin{array}{l} x>0 \\ 0<y<8 \end{array}\right.\)
\(\begin{array}{l} \log _{3} x+xy=\log _{3}(8-y)+x(8-x) \\ \Leftrightarrow 2 \log _{3} x-\log _{3} x+xy=\log _{3}(8-y)+8 x-x^{2} \\ \Leftrightarrow 2 \log _{3} x+x^{2}=\log _{3} x+\log _{3}(8-y)+8 x-xy \\ \Leftrightarrow \log _{3} x^{2}+x^{2}=\log _{3}[x(8-y)]+x(8- y) \end{array}\)
Do hàm số \(f(t)=\log _{3} t+t\) đồng biến trên \((0;+\infty)\) đồng thời từ giả thiết bài toán có:
\(\left\{\begin{array}{l} x^{2} \in(0 ;+\infty) \\ x(8-y) \in(0 ;+\infty) \quad \Rightarrow x^{2}=x(8-y) \Leftrightarrow x+y=8 \\ f\left(x^{2}\right)=f[x(8-y)] \end{array}\right.\)
Do x,y>0 nên có \(x \in(0 ; 8)\).
Thay vào P ta có: \(P=x^{3}-x^{2}-(8-x)^{2}-16 x=x^{3}-2 x^{2}-64\).
Xét hàm số \(g(x)=x^{3}-2 x^{2}-64 ; x \in(0 ; 8) \text { ta có } \min\limits _{(0 ; 8)} g(x)=-\frac{1760}{27}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Trường THPT Nho Quan B