Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right)dx} = 2;\,\,\int\limits_0^3 {f\left( x \right)dx} = 6\). Tính \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiCó \(I = \int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} = \int\limits_{ - 1}^{\frac{1}{2}} {f\left( {1 - 2x} \right)dx} + \int\limits_{\frac{1}{2}}^1 {f\left( {2x - 1} \right)dx} \)
\( = - \frac{1}{2}\int\limits_{ - 1}^{\frac{1}{2}} {f\left( {1 - 2x} \right)d\left( {1 - 2x} \right)} \left| {\mathop {}\limits_{t = 1 - 2x}^{} + } \right.\frac{1}{2}\int\limits_{\frac{1}{2}}^1 {f\left( {2x - 1} \right)d\left( {2x - 1} \right)} \left| {\mathop {}\limits_{t = 2x - 1}^{} } \right.\)
\( = - \frac{1}{2}\int\limits_3^0 {f\left( t \right)dt} + \frac{1}{2}\int\limits_0^1 {f\left( t \right)dt} = - \frac{1}{2}\int\limits_3^0 {f\left( x \right)dx} + \frac{1}{2}\int\limits_0^1 {f\left( x \right)dx} = \frac{1}{2}.6 + \frac{1}{2}.2 = 4\)
Đề thi thử THPT QG môn Toán năm 2018
Trường THPT Nguyễn Trung Trực