Cho hàm số \(f(x)\) có đạo hàm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWG % 4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaa % aakmaabmaabaGaamiEaiabgkHiTiaaikdaaiaawIcacaGLPaaadaah % aaWcbeqaaiaaiwdaaaGcdaqadaqaaiaadIhacqGHRaWkcaaIZaaaca % GLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaa!49C3! f'\left( x \right) = {\left( {x + 1} \right)^4}{\left( {x - 2} \right)^5}{\left( {x + 3} \right)^3}\). Số điểm cực trị của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaWaaqWaaeaacaWG4baacaGLhWUaayjcSdaacaGLOaGaayzkaaaa % aa!3C87! f\left( {\left| x \right|} \right)\) là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGimaiabgsDi % BpaadeaaeaqabeaacaWG4bGaeyypa0JaeyOeI0IaaGymaaqaaiaadI % hacqGH9aqpcaaIYaaabaGaamiEaiabg2da9iabgkHiTiaaiodaaaGa % ay5waaaaaa!48A7! f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 2\\ x = - 3 \end{array} \right.\).
Ta có bảng biến thiên của hàm số \(f(x)\) :
Ta có bảng biến thiên của hàm số \(f(|x|)\):
Dựa vào bảng biến thiên ta thấy số điểm cực trị của hàm số \(f(|x|)\) là 3 .
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 2