Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadggacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamOy % aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbGaamiEai % abgUcaRiaaigdaaaa!42EC! y = a{x^3} + b{x^2} + cx + 1\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDựa vào bảng biến thiên ta thấy phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % Gaeyypa0JaaG4maiaadggacaWG4bWaaWbaaSqabeaacaaIYaaaaOGa % ey4kaSIaaGOmaiaadkgacaWG4bGaey4kaSIaam4yaiabg2da9iaaic % daaaa!42A3! y' = 3a{x^2} + 2bx + c = 0\) có hai nghiệm phân biệt đều dương.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aai % qaaqaabeqaaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI % ZaGaamyyaiaadogacqGH+aGpcaaIWaaabaGaamiEamaaBaaaleaaca % aIXaaabeaakiabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH % 9aqpcqGHsisldaWcaaqaaiaaikdacaWGIbaabaGaaG4maiaadggaaa % GaeyOpa4JaaGimaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG % UaGaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaam % 4yaaqaaiaadggaaaGaeyOpa4JaaGimaaaacaGL7baaaaa!5586! \Rightarrow \left\{ \begin{array}{l} {b^2} - 3ac > 0\\ {x_1} + {x_2} = - \frac{{2b}}{{3a}} > 0\\ {x_1}.{x_2} = \frac{c}{a} > 0 \end{array} \right.\)
và hệ số a < 0 \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcqGHRaWkcqGHEisP % aeqaaOWaaeWaaeaacaWGHbGaamiEamaaCaaaleqabaGaaG4maaaaki % abgUcaRiaadkgacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa % am4yaiaadIhacqGHRaWkcaWGKbaacaGLOaGaayzkaaGaeyypa0Jaey % OeI0IaeyOhIukaaa!4E53! \mathop {\lim }\limits_{x \to + \infty } \left( {a{x^3} + b{x^2} + cx + d} \right) = - \infty \)
Từ đó suy ra c < 0 ; b > 0
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3