Cho hàm số \(y = f (x)\) liên tục, luôn dương trên \([0;3]\) và thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!434A! I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} = 4\). Khi đó giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % aaaa!4AD3! K = \int\limits_0^3 {\left( {{e^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} \) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaqGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % GccqGH9aqpdaWdXbqaaiaabwgadaahaaWcbeqaaiaaigdacqGHRaWk % ciGGSbGaaiOBamaabmaabaGaamOzamaabmaabaGaamiEaaGaayjkai % aawMcaaaGaayjkaiaawMcaaaaakiaabsgacaWG4baaleaacaaIWaaa % baGaaG4maaqdcqGHRiI8aOGaey4kaSYaa8qCaeaacaaI0aGaaeizai % aadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYdGccqGH9aqpcaqG % LbGaaiOlamaapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawM % caaiaabsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGa % ey4kaSYaa8qCaeaacaaI0aGaaeizaiaadIhaaSqaaiaaicdaaeaaca % aIZaaaniabgUIiYdGccqGH9aqpcaaI0aGaaeyzaiabgUcaRiaaisda % caWG4bWaaubmaeqaleaacaaIWaaabaGaaG4maaqdbaGaaiiFaaaaki % abg2da9iaaisdacaqGLbGaey4kaSIaaGymaiaaikdaaaa!8337! K = \int\limits_0^3 {\left( {{{\rm{e}}^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} = \int\limits_0^3 {{{\rm{e}}^{1 + \ln \left( {f\left( x \right)} \right)}}{\rm{d}}x} + \int\limits_0^3 {4{\rm{d}}x} = {\rm{e}}.\int\limits_0^3 {f\left( x \right){\rm{d}}x} + \int\limits_0^3 {4{\rm{d}}x} = 4{\rm{e}} + 4x\mathop |\nolimits_0^3 = 4{\rm{e}} + 12\)
Vậy K = 4e + 12
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 2