Cho x, y là các số thực thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgY % da8iaadIhacqGH8aapdaGcaaqaaiaadMhaaSqabaaaaa!3ACD! 1 < x < \sqrt y \). Tìm giá trị nhỏ nhất của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadIhaaeqa % aOGaamyEaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaI4aWaaeWaaeaaciGGSbGaai4BaiaacEga % daWgaaWcbaWaaSaaaeaadaGcaaqaaiaadMhaaWqabaaaleaacaWG4b % aaaaqabaGcdaWcaaqaamaakaaabaGaamyEaaWcbeaaaOqaamaakaaa % baGaamiEaaWcbeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaa!4C97! P = {\left( {{{\log }_x}y - 1} \right)^2} + 8{\left( {{{\log }_{\frac{{\sqrt y }}{x}}}\frac{{\sqrt y }}{{\sqrt x }}} \right)^2}\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có : \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaWaaOaaaeaacaWG5baameqaaaWc % baGaamiEaaaaaeqaaOWaaSaaaeaadaGcaaqaaiaadMhaaSqabaaake % aadaGcaaqaaiaadIhaaSqabaaaaOGaeyypa0ZaaSaaaeaacaaIXaaa % baGaaGOmaaaadaqadaqaaiGacYgacaGGVbGaai4zamaaBaaaleaada % WcaaqaamaakaaabaGaamyEaaadbeaaaSqaaiaadIhaaaaabeaakmaa % laaabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaaaa!48DA! {\log _{\frac{{\sqrt y }}{x}}}\frac{{\sqrt y }}{{\sqrt x }} = \frac{1}{2}\left( {{{\log }_{\frac{{\sqrt y }}{x}}}\frac{y}{x}} \right)\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaaaacaGGUaWaaSaaaeaaciGGSbGaai4B % aiaacEgadaWgaaWcbaGaamiEaaqabaGccaWG5bGaeyOeI0IaaGymaa % qaamaalaaabaGaaGymaaqaaiaaikdaaaGaciiBaiaac+gacaGGNbWa % aSbaaSqaaiaadIhaaeqaaOGaamyEaiabgkHiTiaaigdaaaaaaa!481C! = \frac{1}{2}.\frac{{{{\log }_x}y - 1}}{{\frac{1}{2}{{\log }_x}y - 1}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaaciGGSbGaai4BaiaacEgadaWgaaWcbaGaamiEaaqabaGccaWG % 5bGaeyOeI0IaaGymaaqaaiGacYgacaGGVbGaai4zamaaBaaaleaaca % WG4baabeaakiaadMhacqGHsislcaaIYaaaaaaa!445D! = \frac{{{{\log }_x}y - 1}}{{{{\log }_x}y - 2}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIYaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadIhaaeqa % aOWaaOaaaeaacaWG5baaleqaaOGaeyOeI0IaaGymaaqaaiaaikdaci % GGSbGaai4BaiaacEgadaWgaaWcbaGaamiEaaqabaGcdaGcaaqaaiaa % dMhaaSqabaGccqGHsislcaaIYaaaaaaa!461F! = \frac{{2{{\log }_x}\sqrt y - 1}}{{2{{\log }_x}\sqrt y - 2}}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maabmaabaGaaGOmaiGacYgacaGGVbGaai4zamaaBaaaleaacaWG % 4baabeaakmaakaaabaGaamyEaaWcbeaakiabgkHiTiaaigdaaiaawI % cacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI4aWaaeWa % aeaadaWcaaqaaiaaikdaciGGSbGaai4BaiaacEgadaWgaaWcbaGaam % iEaaqabaGcdaGcaaqaaiaadMhaaSqabaGccqGHsislcaaIXaaabaGa % aGOmaiGacYgacaGGVbGaai4zamaaBaaaleaacaWG4baabeaakmaaka % aabaGaamyEaaWcbeaakiabgkHiTiaaikdaaaaacaGLOaGaayzkaaWa % aWbaaSqabeaacaaIYaaaaaaa!5510! P = {\left( {2{{\log }_x}\sqrt y - 1} \right)^2} + 8{\left( {\frac{{2{{\log }_x}\sqrt y - 1}}{{2{{\log }_x}\sqrt y - 2}}} \right)^2}\)
Đặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 % da9iaaikdaciGGSbGaai4BaiaacEgadaWgaaWcbaGaamiEaaqabaGc % daGcaaqaaiaadMhaaSqabaaaaa!3DCB! t = 2{\log _x}\sqrt y \) do \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgY % da8iaadIhacqGH8aapdaGcaaqaaiaadMhaaSqabaGccqGHuhY2ciGG % SbGaai4BaiaacEgadaWgaaWcbaGaamiEaaqabaGccaaIXaGaeyipaW % JaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadIhaaeqaaOGaamiEaiab % gYda8iGacYgacaGGVbGaai4zamaaBaaaleaacaWG4baabeaakmaaka % aabaGaamyEaaWcbeaaaaa!4E15! 1 < x < \sqrt y \Leftrightarrow {\log _x}1 < {\log _x}x < {\log _x}\sqrt y \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % iDaiabg6da+iaaikdaaaa!3B0E! \Rightarrow t > 2\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI % YaWaaeWaaeaacaWG0bGaeyOeI0IaaGymaaGaayjkaiaawMcaamaabm % aabaGaamiDaiabgkHiTiaaisdaaiaawIcacaGLPaaadaqadaqaaiaa % dshadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaamiDaiabgU % caRiaaisdaaiaawIcacaGLPaaaaeaadaqadaqaaiaadshacqGHsisl % caaIYaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa!5062! f'\left( t \right) = \frac{{2\left( {t - 1} \right)\left( {t - 4} \right)\left( {{t^2} - 2t + 4} \right)}}{{{{\left( {t - 2} \right)}^3}}}\) ; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGimaiabgkDi % EpaadeaaeaqabeaacaWG0bGaeyypa0JaaGymaaqaaiaadshacqGH9a % qpcaaI0aaaaiaawUfaaaaa!4403! f'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l} t = 1\\ t = 4 \end{array} \right.\)
Lập bảng biến thiên trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIYaGaai4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!3B4B! \left( {2; + \infty } \right)\) ta được
Vậy giá trị nhỏ nhất của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maabmaabaGaciiBaiaac+gacaGGNbWaaSbaaSqaaiaadIhaaeqa % aOGaamyEaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaI4aWaaeWaaeaaciGGSbGaai4BaiaacEga % daWgaaWcbaWaaSaaaeaadaGcaaqaaiaadMhaaWqabaaaleaacaWG4b % aaaaqabaGcdaWcaaqaamaakaaabaGaamyEaaWcbeaaaOqaamaakaaa % baGaamiEaaWcbeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaa!4C97! P = {\left( {{{\log }_x}y - 1} \right)^2} + 8{\left( {{{\log }_{\frac{{\sqrt y }}{x}}}\frac{{\sqrt y }}{{\sqrt x }}} \right)^2}\) là 27 đạt được khi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 % da9iaaisdacqGHuhY2caaIYaGaciiBaiaac+gacaGGNbWaaSbaaSqa % aiaadIhaaeqaaOWaaOaaaeaacaWG5baaleqaaOGaeyypa0JaaGinaa % aa!42B3! t = 4 \Leftrightarrow 2{\log _x}\sqrt y = 4\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aaO % aaaeaacaWG5baaleqaaOGaeyypa0JaamiEamaaCaaaleqabaGaaGOm % aaaakiabgsDiBlaadMhacqGH9aqpcaWG4bWaaWbaaSqabeaacaaI0a % aaaaaa!42B1! \Leftrightarrow \sqrt y = {x^2} \Leftrightarrow y = {x^4}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 2