Cho hàm số y = f(x) liên tục trên R và có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}{\left( {x - 5} \right)^3}\). Số điểm cực trị của hàm số y = f(x) là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = 2\\ x = 5 \end{array} \right.\).
x = 1: nghiệm đơn.
x = 2 : nghiệm bội 2.
x = 5 : nghiệm bội 3.
Do đó, số điểm cực trị của hàm số y = f(x) là 2.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9