Cho hàm số y=f(x) xác định trên \(\mathbb{R}\) và hàm số y=f'(x) có đồ thị như hình bên. Biết rằng f'(x)<0 với mọi \(x\in \left( -\infty ;-3,4 \right)\cup \left( 9;+\infty \right).\) Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x)=f(x)-mx+5 có đúng hai điểm cực trị.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiSố điểm cực trị của hàm số g(x) bằng số nghiệm đơn (bội lẻ) của phương trình f'(x)=m.
Dựa và đồ thị ta có điều kiện \(\left[ \begin{align} & 0<m\le 5 \\ & 10\le m<13 \\ \end{align} \right.\).
Vậy có 8 giá trị nguyên dương của m thỏa mãn.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Mạc Đĩnh Chi lần 2
13/11/2024
146 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9