Tìm tất cả các giá trị của tham số m để bất phương trình \({{4}^{x-1}}-m\left( {{2}^{x}}+1 \right)>0\) nghiệm đúng với mọi \(x\in \mathbb{R}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t={{2}^{x}}, t>0\Rightarrow t+1>0\)
Bài toán đã cho trở thành:
Tìm tất cả các giá trị của tham số m để bất phương trình: \(\frac{{{t}^{2}}}{4\left( t+1 \right)}>m\,,\,\forall t>0\,\,\left( 1 \right)\)
Đặt \(f\left( t \right)=\frac{{{t}^{2}}}{4\left( t+1 \right)},\,\left( t>0 \right)\Rightarrow {f}'\left( t \right)=\frac{{{t}^{2}}+2t}{4{{\left( t+1 \right)}^{2}}}\Rightarrow {f}'\left( t \right)=0\Leftrightarrow t=0\,\left( l \right)\vee t=-2\,\left( l \right)\)
Bảng biến thiên:
Nhìn vào bảng biến thiên ta có \(m\in \left( -\infty ;\,0 \right]\) thỏa yêu cầu bài toán.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Mạc Đĩnh Chi lần 2