Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) như hình vẽ bên và đường thẳng \(d:y = {m^3} - 3{m^2} + 4\) (với \(m\) là tham số). Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( C \right)\) tại ba điểm phân biệt?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTừ đồ thị hàm số ta thấy rằng đường thẳng \(d:y = {m^3} - 3{m^2} + 4\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) tại ba điểm phân biệt \( \Leftrightarrow 0 < {m^3} - 3{m^2} + 4 < 4 \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right){\left( {m - 2} \right)^2} > 0\\{m^3} - 3{m^2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 1\\m < 3\\m \ne 0\\m \ne 2\end{array} \right.\)
\( \Rightarrow m \in \left( { - 1;3} \right)\backslash \left\{ {0;2} \right\}\) mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ 1 \right\}\)
Vậy có một giá trị của \(m\) thỏa mãn điều kiện.
Chọn C.