Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Một hình nón có đỉnh là tâm của hình vuông \(A'B'C'D'\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\). Tính diện tích xung quanh của hình nón đó.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(I;O\) lần lượt là tâm hình vuông \(A'B'C'D'\) và \(ABCD.\) Suy ra \(IO = AA' = a\)
Hình nón có đỉnh \(I\) , bán kính đáy \(R = OA = \dfrac{{AC}}{2}\) và đường sinh \(l = IA\)
Xét tam giác vuông \(ABC\) có \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow R = OA = \dfrac{{AC}}{2} = \dfrac{{a\sqrt 2 }}{2}\)
Xét tam giác vuông \(IOA\) có \(IA = \sqrt {O{I^2} + O{A^2}} = \sqrt {{a^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)}^2}} = \dfrac{{a\sqrt 6 }}{2}\)
Diện tích xung quanh hình nón \({S_{xq}} = \pi Rl = \pi .OA.IA = \pi .\dfrac{{a\sqrt 2 }}{2}.\dfrac{{a\sqrt 6 }}{2} = \dfrac{{\pi {a^2}\sqrt 3 }}{2}\)
Chọn D.