Cho hình chóp có S.ABCD đáy ABCD là hình chữ nhật. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SA biết \(AD = a\sqrt 3 ,AB = a\). Khi đó khoảng cách từ C đến (MBD) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm của \(AB \Rightarrow SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\)(Vì \(\left( {SAB} \right) \bot \left( {ABCD} \right)\))
Gọi G là trọng tâm tam giác SAB, suy ra G là là giao điểm của SH và BM.
Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC
\( \Rightarrow d\left( {C\,;\,\left( {MBD} \right)} \right) = d\left( {A\,;\,\left( {MBD} \right)} \right)\)
Từ H kẻ \(HI \bot BD\), ta có \(\left\{ \begin{array}{l} BD \bot HI\\ BD \bot SH \end{array} \right. \Rightarrow BD \bot \left( {SHI} \right) \Rightarrow \left( {MBD} \right) \bot \left( {SHI} \right)\)
Từ H kẻ \(HK \bot GI \Rightarrow HK \bot \left( {MBD} \right) \Rightarrow HK = d\left( {H;\left( {MBD} \right)} \right)\)
Gọi AJ là đường cao trong \(\Delta ABD \Rightarrow \frac{1}{{A{J^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{3{a^2}}} = \frac{4}{{3{a^2}}} \Rightarrow AJ = \frac{{a\sqrt 3 }}{2}\)
Ta có: \(HI = \frac{1}{2}AJ = \frac{{a\sqrt 3 }}{4};HG = \frac{1}{3}HS = \frac{{a\sqrt 3 }}{6}\)
Xét tam giác vuông GHI, có \(\frac{1}{{H{K^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{G^2}}} = \frac{{16}}{{3{a^2}}} + \frac{{36}}{{3{a^2}}} = \frac{{52}}{{3{a^2}}} \Rightarrow HK = \frac{{a\sqrt {39} }}{{26}}\)
Do H là trung điểm của \(AB \Rightarrow d\left( {A;\left( {MBD} \right)} \right) = 2d\left( {H;\left( {MBD} \right)} \right) = 2HK = \frac{{a\sqrt {39} }}{{13}}\)
Vậy \(d\left( {C\,;\,\left( {MBD} \right)} \right) = d\left( {A\,;\,\left( {MBD} \right)} \right) = \frac{{a\sqrt {39} }}{{13}}\).