Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐặt \(u = 2 + {x^3} \Rightarrow du = 3{x^2}dx\)
Đổi cận \(\left\{ \begin{array}{l} x = 1\\ x = - 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} u = 3\\ u = 1 \end{array} \right.\).
Khi đó: \(\int\limits_{ - 1}^1 {{x^2}\sqrt {2 + {x^3}} dx} = \frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9