Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC).
Thể tích của khối chóp S.ABC.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi M là trung điểm BC, \(I = EF \cap SM,\) suy ra I là trung điểm EF và SM.
Có \(\Delta ACS = \Delta ABS\left( {c - c - c} \right) \Rightarrow AF = AE = AEF\) cân tại \(A \Rightarrow AI \bot EF.\)
Do \(\left( {AEF} \right) \bot \left( {SBC} \right)\) nên \(AI \bot \left( {SBC} \right) \Rightarrow AI \bot SM.\)
Tam giác ASM có \(AI \bot SM\) và I là trung điểm SM nên ASM cân tại A, suy ra \(SA = AM = \frac{{a\sqrt 3 }}{2}.\)
Gọi G là trọng tâm tam giác \(ABC \Rightarrow SG \bot \left( {ABC} \right)\) và \(AG = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)
Trong tam giác SAG có: \(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {\frac{{3{a^2}}}{4} - \frac{{3{a^2}}}{9}} = \frac{{a\sqrt {15} }}{6}.\)
Vậy thể tích khối chóp S.ABC là \({V_{S.ABC}} = \frac{1}{3}SG.{S_{ABC}} = \frac{1}{3}.\frac{{a\sqrt {15} }}{6}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 5 }}{{24}}.\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Quang Trung - Bình Phước lần 2