Cho hình chóp \(S.ABC\) có \(AB=AC=4,BC=2,SA=4\sqrt{3};\angle SAB=\angle SAC={{30}^{0}}.\) Gọi \({{G}_{1}},{{G}_{2}},{{G}_{3}}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( ABC \right).\) Thể tích của khối chóp \(T.{{G}_{1}}{{G}_{2}}{{G}_{3}}\) bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P=2a-b.\)  

Suy nghĩ trả lời câu hỏi trước khi xem đáp án

ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Đề thi thử THPT QG năm 2021 môn Toán

Trường THPT Chuyên Bắc Ninh lần 3

30/11/2024
179 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9