Ông X muốn xây một bình chứa hình trụ có thể tích \(72{{m}^{3}}.\) Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi bán kính đáy của hình trụ là \(r\left( m \right),\left( r>0 \right)\) suy ra chiều cao của hình trụ là \(h=\frac{72}{\pi {{r}^{2}}}\left( m \right).\)
Diện tích xung quanh là: \({{S}_{xq}}=2\pi rh=\frac{144}{r}\left( {{m}^{2}} \right)\)
Diện tích đáy là: \({{S}_{day}}=\pi {{r}^{2}}\left( {{m}^{3}} \right)\)
Tổng chi phí để xây là: \(\pi {{r}^{2}}.100+\pi {{r}^{2}}.140+\frac{144}{r}.90=\pi {{r}^{2}}.240+\frac{12960}{r}\) (nghìn đồng).
Xét hàm số
\(f\left( r \right)=\pi {{r}^{2}}.240+\frac{12960}{r}=\pi {{r}^{2}}.240+\frac{6480}{r}+\frac{6480}{r}\ge 3\sqrt[3]{\pi {{r}^{2}}.240.\frac{6480}{r}.\frac{6480}{r}}=6480\sqrt[3]{\pi }\)
Hàm số đạt giá trị nhỏ nhất khi \(\pi {{r}^{2}}.240=\frac{6480}{r}\Leftrightarrow r=\frac{3}{\sqrt[3]{\pi }}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Bắc Ninh lần 3