Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD={{60}^{0}},SO\bot (ABCD)\) và mặt phẳng (SCD) tạo với đáy một góc \({{60}^{0}}\). Tính thế tích khối chóp S.ABCD
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKẻ \(OH\bot CD,\left( H\in CD \right).\) Ta có:
\(\left\{ \begin{align} & CD\bot OH \\ & CD\bot SO \\ \end{align} \right.\Rightarrow CD\bot (SOH)\Rightarrow \angle \left( \left( SCD \right);\left( ABCD \right) \right)=\angle SHO={{60}^{0}}\)
ABCD là hình thoi tâm O, \(\angle BAD={{60}^{0}}\Rightarrow \Delta BCD\) đều, \(OH=\frac{1}{2}\left( B;CD \right)=\frac{1}{2}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{4}\)
\(\Delta SOH\) vuông tại \(O\Rightarrow SO=OH.\tan \angle H=\frac{a\sqrt{3}}{4}.\tan {{60}^{0}}=\frac{3a}{4}\)
Diện tích hình thoi ABCD: \({{S}_{ABCD}}=2{{S}_{ABC}}=2.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{2}}\sqrt{3}}{2}\)
Tính thế tích khối chóp S.ABCD: \({{V}_{S.ABCD}}=\frac{1}{3}.SO.{{S}_{ABCD}}=\frac{1}{2}.\frac{3a}{4}.\frac{{{a}^{2}}\sqrt{3}}{2}=\frac{{{a}^{3}}\sqrt{3}}{8}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Đình Chiểu lần 2