Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Đình Chiểu lần 2
-
Câu 1:
Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là
-
Câu 2:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và \({{u}_{2}}=9.\) Công sai của cấp số cộng đã cho bằng
-
Câu 3:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng:
-
Câu 4:
Thể tích của khối hình hộp chữ nhật có các cạnh lần lượt là a, 2a, 3a bằng
-
Câu 5:
Số cách chọn 2 học sinh từ 7 học sinh là
-
Câu 6:
Tính tích phân \(I = \int\limits_{ - 1}^0 {\left( {2x + 1} \right)dx} \)
-
Câu 7:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Giá trị cực tiểu của hàm số là số nào sau đây?
-
Câu 8:
Cho \(\int\limits_{0}^{1}{f\left( x \right)dx=3,\int\limits_{0}^{1}{g\left( x \right)dx=-2}}\). Tính giá trị của biểu thức \(I=\int\limits_{0}^{1}{\left[ 2f\left( x \right)-3g\left( x \right) \right]}dx\).
-
Câu 9:
Tính thể tích của khối nón có chiều cao bằng 4 và độ dài đường sinh bằng 5.
-
Câu 10:
Cho hai số phức \({{z}_{1}}=2-3i\) và \({{z}_{2}}=1-i\). Tính \(z={{z}_{1}}+{{z}_{2}}\).
-
Câu 11:
Nghiệm của phương trình \({2^{2x - 1}} = 8\) là
-
Câu 12:
Cho số phức z có điểm biểu diễn trong mặt phẳng tọa độ Oxy là điểm \(M\left( 3;-5 \right)\). Xác định số phức liên hợp \(\overline{z}\) của z.
-
Câu 13:
Số phức nghịch đảo của số phức z=1+3i là
-
Câu 14:
Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)=\frac{1}{x+1}\) và \(F\left( 0 \right)=2\) thì \(F\left( 1 \right)\) bằng.
-
Câu 15:
Cho số phức z thỏa mãn \(z\left( 1+i \right)=3-5i\). Tính môđun của z.
-
Câu 16:
Cho hàm số \(f\left( x \right)\) thỏa mãn \({f}'\left( x \right)=27+\cos x\) và \(f\left( 0 \right)=2019.\) Mệnh đề nào dưới đây đúng?
-
Câu 17:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
-
Câu 18:
Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
-
Câu 19:
Xác định tọa độ điểm I là giao điểm của hai đường tiệm cận của đồ thị hàm số \(y=\frac{2x-3}{x+4}.\)
-
Câu 20:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
-
Câu 21:
Với a và b là hai số thực dương tùy ý và \(a\ne 1,\text{ }{{\log }_{\sqrt{a}}}({{a}^{2}}b)\) bằng
-
Câu 22:
Một hình trụ có bán kính đáy r = 5cm, chiều cao h = 7cm. Diện tích xung quanh của hình trụ này là:
-
Câu 23:
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên \(\left[ -4;0 \right]\) lần lượt là M và m. Giá trị của M+m bằng
-
Câu 24:
Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\)
-
Câu 25:
Viết biểu thức \(P=\sqrt[3]{x.\sqrt[4]{x}}\) (x>0) dưới dạng luỹ thừa với số mũ hữu tỷ.
-
Câu 26:
Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
-
Câu 27:
Trong không gian Oxyz, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-3=0\). Bán kính của mặt cầu bằng:
-
Câu 28:
Tính đạo hàm của hàm số \(y = {3^{x + 1}}\)
-
Câu 29:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số có bao nhiêu điểm cực tiểu
-
Câu 30:
Tập nghiệm S của bất phương trình \({5^{1 - 2{\rm{x}}}} > \frac{1}{{125}}\) là:
-
Câu 31:
Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( 1;2;3 \right)\) có phương trình là
-
Câu 32:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\). Một vectơ chỉ phương của đường thẳng AB là:
-
Câu 33:
Trong không gian \(Oxyz\), phương trình đường thẳng đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x+y-3z-5=0\) là
-
Câu 34:
Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;3 \right)\) và \(B\left( 3;2;1 \right)\). Phương trình mặt cầu đường kính AB là
-
Câu 35:
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
-
Câu 36:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right),SA=2a,\) tam giác ABC vuông tại B, \(AB=a\sqrt{3}\) và BC=a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng
-
Câu 37:
Cho tập hợp \(S=\left\{ 1;2;3;...;17 \right\}\) gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên một tập con có 3 phần tử của tập hợp S. Tính xác suất để tập hợp được chọn có tổng các phần tử chia hết cho 3.
-
Câu 38:
Hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A,AB=a,AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) là điểm I thuộc cạnh BC. Tính khoảng cách từ A tới mặt phẳng \(\left( A'BC \right)\).
-
Câu 39:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD={{60}^{0}},SO\bot (ABCD)\) và mặt phẳng (SCD) tạo với đáy một góc \({{60}^{0}}\). Tính thế tích khối chóp S.ABCD
-
Câu 40:
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Đồ thị của hàm số \(y={f}'\left( x \right)\) như hình vẽ.
Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 3x \right)+9x\) trên đoạn \(\left[ -\frac{1}{3};\frac{1}{3} \right]\) là
-
Câu 41:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(f\left( x \right)+x{f}'\left( x \right)=4x+1\) với mọi x>0. Tính \(f\left( 2 \right).\)
-
Câu 42:
Cho số phức z=a+bi \(\left( a,\,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z-3 \right|=\left| z-1 \right|\) và \(\left( z+2 \right)\left( \overline{z}-i \right)\) là số thực. Tính a+b.
-
Câu 43:
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {3{x^2}\,\,\,\,\,khi\,\,0 \le x \le 1}\\ {4 - x\,\,khi\,\,1 \le x \le 2\,\,} \end{array}} \right.\). Tính \(\int\limits_0^{{e^2} - 1} {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)
-
Câu 44:
Trong hệ tọa độ Oxyz, cho điểm \(M\left( 1;-1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=t \\ & y=1-t \\ & z=-1 \\ \end{align} \right.\), \({{d}_{2}}:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z+2}{1}\). Đường thẳng \(\Delta \) đi qua M và cắt cả hai đường thẳng \({{d}_{1}},{{d}_{2}}\) có véc tơ chỉ phương là \(\overrightarrow{{{u}_{\Delta }}}\left( 1;a;b \right)\), tính a+b
-
Câu 45:
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
-
Câu 46:
Cho số phức \({{z}_{1}}, {{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=12\) và \(\left| {{z}_{2}}-3-4\text{i} \right|=5\). Giá trị nhỏ nhất của \(\left| {{z}_{1}}-{{z}_{2}} \right|\) là:
-
Câu 47:
Có bao nhiêu cặp số nguyên \(\left( x,y \right)\) với \(1\le x\le 2020\) thỏa mãn \(x\left( {{2}^{y}}+y-1 \right)=2-{{\log }_{2}}{{x}^{x}}\)
-
Câu 48:
Cho đồ thị (C): \(y = {x^4} - 2{x^2}\). Khẳng định nào sau đây là sai ?
-
Câu 49:
Giá trị của tham số m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:
-
Câu 50:
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng