Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTheo công thức tọa độ trọng tâm ta có \(\left\{ \begin{array}{l} {x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{1 + 2 + 0}}{3} = 1\\ {y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 0 + 9}}{3} = 4\\ {z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3} = \frac{{5 + 1 + 0}}{3} = 2 \end{array} \right.\) \( \Rightarrow G\left( {1;4;2} \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Đình Chiểu lần 2
26/11/2024
36 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9