Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\angle SBA = \angle SCA = {90^0}\). Biết góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Khoảng cách giữa hai đường thẳng SB và AC là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrong (ABC) gọi I là trung điểm của BC, gọi AH là đường kính đường tròn ngoại tiếp \(\Delta ABC\).
\( \Rightarrow HB \bot AB,HC \bot AC\)
Ta có: \(\left\{ \begin{array}{l}
BH \bot AB\\
SB \bot AB
\end{array} \right. \Rightarrow AB \bot \left( {SBH} \right) \Rightarrow AB \bot SH\)
Chứng minh tương tự ta có \(AC\bot SH\)
\( \Rightarrow SH \bot \left( {ABC} \right)\)
Trong (ABC) kẻ đường thẳng qua B song song với AC cắt HC tại M.
Ta có \(AC//BM \Rightarrow d\left( {SB;AC} \right) = d\left( {AC;\left( {SBM} \right)} \right) = d\left( {C;\left( {SBM} \right)} \right)\)
Ta có \(CH \bot AC \Rightarrow CM \bot BM\)
Xét tam giác vuông ACH có: \(CH = AC.\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác vuông BCM có: \(CM = BC.cos{30^0} = \frac{{a\sqrt 3 }}{2}\)
\(CH \cap \left( {SBM} \right) = M \Rightarrow \frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac{{HM}}{{CM}} = 1 - \frac{{CH}}{{CM}} = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)
Trong (SHM) kẻ \(HK \bot SM\,\,\left( {K \in SM} \right)\) ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
BM \bot HM\\
BM \bot SH
\end{array} \right. \Rightarrow BM \bot \left( {SHM} \right) \Rightarrow BM \bot HK\\
\left\{ \begin{array}{l}
HK \bot BM\\
HK \bot SM
\end{array} \right. \Rightarrow HK \bot \left( {SBM} \right) \Rightarrow d\left( {H;\left( {SBM} \right)} \right) = HK
\end{array}\)
Ta có: \(\angle \left( {SA;\left( {ABC} \right)} \right) = \angle \left( {SA;HA} \right) = \angle SAH = {45^0}\)
\( \Rightarrow \Delta SAH\) vuông cân tại \(H \Rightarrow SH = AH = \frac{{AC}}{{\cos {{30}^0}}} = \frac{{2a}}{{\sqrt 3 }}\)
\(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}\)
Áp dụng hệ thức lượng trong tam giác vuông SMH ta có:
\(HK = \frac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a}}{{\sqrt 3 }}.\frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{4{a^2}}}{3} + \frac{{3{a^2}}}{{36}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}{{51}}\)
Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}{{17}}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên KHTN Hà Nội lần 2