Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Số đo góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABCD \right)\) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O\) là giao điểm của \(AC\) và \(BD.\)
Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO\bot \left( ABCD \right)\).
Gọi \(H\) là trung điểm của \(AB.\)
Ta có \(\left\{ \begin{array}{l} SO \bot AB\\ OH \bot AB \end{array} \right. \Rightarrow AB \bot \left( {SHO} \right) \Rightarrow \widehat {SHO} = \widehat {\left( {\left( {SAB} \right);\left( {ABCD} \right)} \right).}\)
\(OH=\frac{1}{2}AD=\frac{a}{2}\)
\(OA=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)
Trong tam giác vuông \(SOA\) có \(SO=\sqrt{S{{A}^{2}}-O{{A}^{2}}}=\sqrt{{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}-{{\left( \frac{a\sqrt{2}}{2} \right)}^{2}}}=\frac{a\sqrt{3}}{2}.\)
\(\tan \widehat{SHO}=\frac{SO}{OH}=\sqrt{3}\Rightarrow \widehat{SHO}={{60}^{0}}.\)
Số đo góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABCD \right)\) là \({{60}^{0}}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Hàn Thuyên lần 3