Cho số thực \(m > 1\) thỏa mãn \(\int\limits_1^m {\left| {2mx - 1} \right|dx = 1} \). Khẳng định nào sau đây đúng?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVới mọi \(x \in \left[ {1;m} \right]\) thì \(m \ge x \ge 1\) mà \(m > 1 \Rightarrow 2m > 2\)
Suy ra \(2m.x > 2 \Leftrightarrow 2mx - 1 > 1 \Rightarrow 2mx - 1 > 0\)
Nên \(\int\limits_1^m {\left| {2mx - 1} \right|dx} = \int\limits_1^m {\left( {2mx - 1} \right)dx = } \left. {\left( {m{x^2} - x} \right)} \right|_1^m = \left( {{m^3} - m - m + 1} \right) = {m^3} - 2m + 1 = 1\)
\( \Leftrightarrow {m^3} - 2m = 0 \Leftrightarrow m\left( {{m^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\,\,\,\,\,\,\,\,\left( {ktm} \right)\\m = - \sqrt 2 \left( {ktm} \right)\\m = \sqrt 2 \,\,\,\,\left( {tm} \right)\end{array} \right.\)
Vậy \(m = \sqrt 2 \in \left( {1;3} \right)\)
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Huỳnh Văn Nghệ