Tích tất cả các nghiệm của phương trình \(\log _3^2x - 2{\log _3}x - 7 = 0\) là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐiều kiện: \(x > 0\).
Đặt \(t = {\log _3}x\) phương trình trở thành \({t^2} - 2t - 7 = 0\)
Có \(ac = 1.\left( { - 7} \right) = - 7 < 0\) nên phương trình luôn có hai nghiệm \({t_1},{t_2}\) phân biệt thỏa mãn \(\left\{ \begin{array}{l}{t_1} + {t_2} = 2\\{t_1}{t_2} = - 7\end{array} \right.\).
Do đó phương trình đã cho luôn có hai nghiệm phân biệt \({x_1} = {3^{{t_1}}};{x_2} = {3^{{t_2}}}\).
Khi đó \({x_1}.{x_2} = {3^{{t_1}}}{.3^{{t_2}}} = {3^{{t_1} + {t_2}}} = {3^2} = 9\)
Vậy tích các nghiệm của phương trình đã cho bằng \(9\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Huỳnh Văn Nghệ
29/11/2024
212 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9