Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Huỳnh Văn Nghệ
-
Câu 1:
Với \(a\) là số thực dương bất kỳ, khẳng định nào dưới đây đúng?
-
Câu 2:
Nguyên hàm của hàm số \(y = {2^x}\) là:
-
Câu 3:
Cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).
-
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên \(\mathbb{R}\). Chọn mệnh đề sai trong các mệnh đề sau:
-
Câu 5:
Cho mặt phẳng \(\left( P \right):3x - y + 2 = 0\). Véc tơ nào trong các véc tơ dưới đây là một véc tơ pháp tuyến của \(\left( P \right)?\)
-
Câu 6:
Đường cong trong hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
-
Câu 7:
Cho hàm số \(y = \dfrac{{x + 1}}{{2x - 2}}\). Khẳng định nào sau đây đúng?
-
Câu 8:
Cho hình nón có bán kính đáy bằng \(a\) và độ dài đường sinh bằng \(2a.\) Diện tích xung quanh hình nón đó bằng
-
Câu 9:
Tập xác định của hàm số \(y = {x^4} - 2018{x^2} - 2019\) là
-
Câu 10:
Cho hình trụ có chiều cao bằng \(2a\), bán kính đáy bằng \(a.\) Diện tích xung quanh hình trụ bằng
-
Câu 11:
Một hộp đựng 9 thẻ được đánh số \(1;2;3;4;5;6;7;8;9\). Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
-
Câu 12:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), biết \(AB = a,AC = 2a\) và \(A'B = 3a\). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\).
-
Câu 13:
Tập nghiệm của bất phương trình \({2^{3x}} < {\left( {\dfrac{1}{2}} \right)^{ - 2x - 6}}\) là
-
Câu 14:
Đường cong trong hình bên là đồ thị của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) với \(a,b,c,d\) là các số thực. Mệnh đề nào dưới đây đúng?
-
Câu 15:
Cho ba điểm \(A\left( {2;1; - 1} \right);B\left( { - 1;0;4} \right);C\left( {0; - 2; - 1} \right)\) . Phương trình mặt phẳng đi qua A và vuông góc với BC là
-
Câu 16:
Giá trị lớn nhất của hàm số \(y = f\left( x \right) = {x^4} - 4{x^2} + 5\) trên đoạn \(\left[ { - 2;3} \right]\) bằng
-
Câu 17:
Cho \(\int\limits_0^4 {f\left( x \right)dx} = 2018\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2x} \right) + f\left( {4 - 2x} \right)} \right]dx} \) .
-
Câu 18:
Cho tam giác \(ABC\) có \(A\left( {1; - 2;0} \right);B\left( {2;1; - 2} \right);C\left( {0;3;4} \right)\). Tìm tọa độ điểm D để tứ giác \(ABCD\) là hình bình hành.
-
Câu 19:
Tích tất cả các nghiệm của phương trình \(\log _3^2x - 2{\log _3}x - 7 = 0\) là
-
Câu 20:
Cho \(a > 0;a \ne 1\) và \({\log _a}x = - 1;{\log _a}y = 4\). Tính \(P = {\log _a}\left( {{x^2}{y^3}} \right)\)
-
Câu 21:
Gọi \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = {\left( {x - 1} \right)^2}{e^x}\). Tính \(S = a + 2b + c\).
-
Câu 22:
Cho số thực \(m > 1\) thỏa mãn \(\int\limits_1^m {\left| {2mx - 1} \right|dx = 1} \). Khẳng định nào sau đây đúng?
-
Câu 23:
Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, \(SA = 2a\). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).
-
Câu 24:
Cho đa giác đều có \(2018\) đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?
-
Câu 25:
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\), góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích của khối chóp \(S.ABCD\) theo \(a\).
-
Câu 26:
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 3\,\,khi\,\,x \ge 1\\5 - x\,\,\,\,khi\,\,\,x < 1\end{array} \right.\). Tính\(I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx} + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \).
-
Câu 27:
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \dfrac{1}{4}{x^4} + mx - \dfrac{3}{{2x}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?
-
Câu 28:
Gọi \(m,n\) là hai giá trị thực thỏa mãn: giao tuyến của hai mặt phẳng \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) và \(\left( {{Q_m}} \right):x - my + nz + 2 = 0\) vuông góc với mặt phẳng \(\left( \alpha \right):4x - y - 6z + 3 = 0\). Tính \(m + n\).
-
Câu 29:
Cho điểm \(M\left( {1;2;5} \right)\), mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Phương trình mặt phẳng \(\left( P \right)\) là
-
Câu 30:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,BC = a\sqrt 3 ,SA = a\) và \(SA\) vuông góc với đáy \(ABCD\). Tính \(\sin \alpha \) với \(\alpha \) là góc tạo bởi đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\).
-
Câu 31:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ, đường thẳng \(d\) có phương trình \(y = x - 1.\) Biết phương trình \(f(x) = 0\) có ba nghiệm \({x_1} < {x_2} < {x_3}\). Giá trị của \({x_1}{x_3}\) bằng
-
Câu 32:
Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài \(2a\). Thể tích của khối nón là
-
Câu 33:
Cho \(f\left( x \right) = {\left( {{e^x} + {x^3}\cos x} \right)^{2018}}\) . Giá trị của \(f''\left( 0 \right)\) là
-
Câu 34:
Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m \in \mathbb{Z}\) và phương trình \({\log _{mx - 5}}\left( {{x^2} - 6x + 12} \right) = {\log _{\sqrt {mx - 5} }}\sqrt {x + 2} \) có nghiệm duy nhất. Tìm số phân tử của \(S\).
-
Câu 35:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B,AB = BC = a;{\rm{ }}AD = 2a.\) Tam giác \(SAD\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác \(S.ABC.\)
-
Câu 36:
Đồ thị hàm số \(y = \dfrac{{1 - \sqrt {4 - {x^2}} }}{{{x^2} - 2x - 3}}\) có số đường tiệm cận đứng là \(m\) và số đường tiệm cận ngang là \(n\). Giá trị của \(m + n\) là
-
Câu 37:
Một hình trụ có bán kính đáy bằng chiều cao và bằng \(a.\) Một hình vuông \(ABCD\) có \(AB;{\rm{ }}CD\) là 2 dây cung của 2 đường tròn đáy và mặt phẳng \((ABCD)\) không vuông góc với đáy. Diện tích hình vuông đó bằng
-
Câu 38:
Gọi \(\left( S \right)\) là mặt cầu đi qua \(4\) điểm \(A\left( {2;0;0} \right),B\left( {1;3;0} \right),C\left( { - 1;0;3} \right),D\left( {1;2;3} \right)\). Tính bán kính \(R\) của \(\left( S \right)\).
-
Câu 39:
Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) , đường thẳng \((d):y = m(x + {\rm{ }}1)\) với \(m\) là tham số, đường thẳng \(\left( \Delta \right):y = 2x - 7.\) Tìm tổng tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt \(A( - 1;0);{\rm{ }}B;{\rm{ }}C\) sao cho \(B,C\) cùng phía với \(\Delta \) và \(d(B;\Delta ){\rm{ }} + d(C;\Delta ){\rm{ }} = {\rm{ }}6\sqrt 5 .\)
-
Câu 40:
Cho hai số thực \(a,b\) thỏa mãn \(\dfrac{1}{4} < b < a < 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {b - \dfrac{1}{4}} \right) - {\log _{\frac{a}{b}}}\sqrt b \).
-
Câu 41:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right).\) Tính \(\cos \varphi \) với \(\varphi \) là góc tạo bởi \((SAC)\) và \((SCD).\)
-
Câu 42:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Gọi \(S\) là tập tất cả các giá trị nguyên dương của tham số \(m\) để hàm số \(y = \left| {f\left( {x - 2018} \right) + m} \right|\) có \(5\) điểm cực trị. Tổng tất cả các giá trị của tập \(S\) bằng
-
Câu 43:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) là \(\dfrac{{a\sqrt {15} }}{5}\) , khoảng cách giữa \(SA,BC\) là \(\dfrac{{a\sqrt {15} }}{5}\) . Biết hình chiếu của \(S\) lên mặt phẳng \(\left( {ABC} \right)\) nằm trong tam giác \(ABC,\) tính thể tích khối chóp \(S.ABC\).
-
Câu 44:
Cho \({\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\rm cosx}\nolimits} = \frac{1}{2}\) và \(0 < x < \frac{\pi }{2}.\) Tính giá trị của \({\mathop{\rm s}\nolimits} {\rm{inx}}.\)
-
Câu 45:
Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông cân ở \(B\) , \(AC = a\sqrt {2.} \) \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(SA = a.\) Gọi \(G\) là trọng tâm của tam giác \(SBC\) Một mặt phẳng đi qua hai điểm \(A,G\) và song song với \(BC\) cắt \(SB,\,SC\) lần lượt tại \(B'\) và \(C'\) . Thể tích khối chóp \(S.AB'C'\)bằng:
-
Câu 46:
Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right).\)
-
Câu 47:
Cho tam giác \(ABC\) cân tại \(A,\) góc \(\angle BAC = {120^0}\) và \(AB = 4cm.\) Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác \(ABC\) xung quanh đường thẳng chứa một cạnh của tam giác \(ABC\)
-
Câu 48:
Cho hàm số \(y = f\left( x \right) = \,a\,{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
-
Câu 49:
Có bao nhiêu giá trị thực của tham số \(m\) để phương trình \(\left( {x - 1} \right)\left( {x - 3} \right)\left( {x - m} \right) = 0\) có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
-
Câu 50:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ:
Hỏi hàm số có bao nhiêu điểm cực trị?